

Расширенная Характеризация Материалов

Используйте ваш реометр для

Расширенной Характеризации Материалов

4-5 Реология растяжения и процессы смешения

7 Реология крахмала

О Динамический Механический ТермоАнализ (ДМТА)

Реология образцов с крупными частицами

9 Межфазная реология

10 Трибология

Используйте ваш реометр для... Реологии растяжения и процессов смешения

Реометр Растяжения Сентманат (SER)

Система для реологии растяжения, разработанная доктором Мартином Сентманатом, превращает ваш реометр МСR в универсальную тестовую платформу для реологии растяжения.

В комбинации с конвекционной печью для контроля температуры, данная система позволяет проводить тесты на растяжение, например, синтетических полимеров, биополимеров или тканей, в широком диапазоне температуры и деформации.

Помимо характеристик растяжения, система SER может использоваться для тестирования на прочность, разрыв, шелушение и трение твёрдых тел.

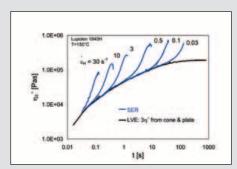
Установка состоит из двух барабанов, соединённых с реометром. Один барабан приводится в движение непосредственно валом реометра, а второй соединён с первым с помощью специальной передачи, при этом он вращается в противоположную сторону. Эта установка может быть погружена в жидкость для предотвращения возможного провисания образца.

Система SER полностью интегрирована в прошивку и программу вашего реометра MCR; ПО обеспечивает все необходимые настройки теста растяжения и представляет все результаты в виде, не требующем дальнейшего анализа.

Используемый с системой SER миниатюрный смеситель XIM, превращает ваш реометр в миниатюрную станцию для компаундирования, смешения и перемешивания, которая позволит вам производить партии образца объёмом менее 4 мл. Оснащённый двумя роторами с двумя крыльчатками и двойным сигма-лезвием, смеситель XIM становится идеальным инструментом для смешения полимеров, гелевых систем и теста.

Характеристики системы для реологии растяжения	
Макс. рекомендов. скорость	20 1/c
деформации Hencky	
Макс. деформация Hencky на	4
оборот барабана	
Температурный диапазон	0 °C - 250 °C
Диаметр наматыв-го барабана	10.31 мм
Длина зоны растяжения	12.72 мм
Аксессуары	CTD 180, CTD 450,
	CTD 600, CTD 200/GL

Требования к образцу	
Мин. сдвиговая вязкость в режиме	10 000 Πac
растяжения	
Масса образца	5 - 200 мг
Рекомендованная ширина образца	1 - 12.7 мм
Рекомендованная толщина образца	0.05 - 1 мм



 $\dot{\varepsilon}_{\rm H} = 1 \, s^1$ $\varepsilon_{\rm H} = 1.0$

Визуализация эксперимента по растяжению расплава полиолефина

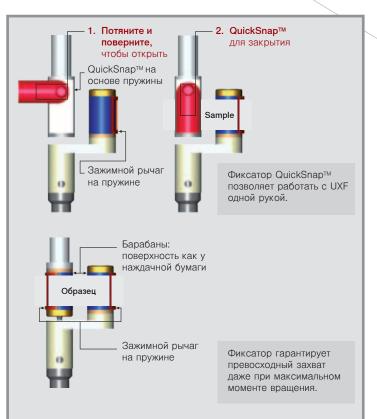
XIM Миниатюрный смеситель

Lupolen 1840Н измеренный при разных скоростях деформации Hencky в сравнении с осцил. измерениями с геометрией конус/плита

Используйте ваш реометр для... Реологии растяжения

Универсальный Фиксатор для Растяжения (UXF)

Универсальный фиксатор для растяжения (UXF) используется для измерений плёнок и волокон на растяжение и разрыв.


В комбинации с реометром МСR и конвекционной печью СТD для контроля температуры, UXF позволяет проводить ДМТА тесты на разрыв в режиме контроля деформации или напряжения во всём температурном диапазоне. Эта комбинированная система используется для изучения таких эффектов, как температурная стабильность, сжатие, удлинение, кристаллизация, фазовые переходы, релаксации и хрупкость плёнок и волокон.

Модульная система включает в себя вращающийся наматывающий барабан и расположенный на удалении от центра барабан для фиксации образца; эта конфигурация позволяет проводить ДМТА тесты на растяжение, а также измерения с одноосевым растяжением.

Противопроскальзывающий фиксатор в UXF гарантирует превосходное сцепление между образцом и барабаном даже при максимальных моментах, в то время, как удобный фиксатор QuickSnap™ позволяет работать с образцом одной рукой.

UXF полностью интегрирован в прошивку и программное обеспечение вашего реометра MCR; прикладное программное обеспечение обеспечивает все необходимые настройки и представляет все результаты в виде, не требующем дальнейшего анализа.

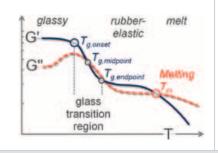
ларактеристики эниверсального Фиксатора для Растяжения (UXF)	
Мультифункциональный UXF	QuickSnap™, AntiSlip
Аксессуары	CTD 180, CTD 450, CTD 600, PTD 200/I, CTD 200/GL
Digital Eye	CCD камера для визуализации
Температурный диапазон	-150 °C - 270 °C
Принцип контроля температуры	Конвекция, излучение, Пельтье
Температура, технологии безопасности	Активно охлаждаемые камера и выпуск СТD 450 и СТD600
Ползучесть, режим растягивающего напряжения (ATC)	Адаптивный контроль растягивающего напряжения
растягивающего напряжения	
растягивающего напряжения (ATC)	растягивающего напряжения
растягивающего напряжения (ATC) Мин. момент	растягивающего напряжения 0.01 мкНм Поддерживает все переменные

Характеристики Универсального Фиксатора для

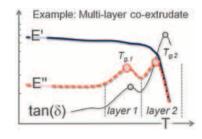
Требования к образцу	
Рекомендованная ширина образца	0.01 - 13 мм
Рекомендованная толщина образца	0.01 - 1 мм
Длина образца	18 мм
Диаметр барабана	12 мм
Макс. скорость растяж-я	5 1/c
Мин. скорость растяж-я	10 ⁻³ 1/c
Рекомендованная мин. сдвиг. вязкость	~10 000 Пас

Используйте ваш реометр для... Динамического Механического ТермоАнализа (ДМТА)

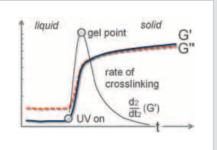
Крепежи для плёнок, брусков с прямоугольным и круглым сечением


Реометры МСR могут также использоваться для Динамического Механического ТермоАнализа (ДМТА). Температурное и механическое поведение плёнок, волокон и твёрдых тел можно исследовать с помощью набора разных крепежей, например, крепежей для брусков с круглым (SCF) и прямоугольным (SRF) сечением, фиксатора для плёнок и волокон (UXF) или систем с параллельными плоскостями (плита/плита).

Большой температурный диапазон конвекционных печей СТD позволяет вам характеризовать материалы от стеклообразного до расплавленного состояния. Следовательно, можно точно определять температуры фазовых переходов и релаксации.



Все данные по кручению и растяжению записываются и представляются в программном обеспечении реометра МСВ. Конвекционные печи СТD 180 и СТD 450 могут быть оснащены цифровой камерой (опция «Цифровой Глаз»), позволяющей делать снимки и видео ролики прямо в программном обеспечении реометра. Доступен большой набор готовых методов и рабочих книг, включающих расчёты и анализы для определения переходных точек, наклона кривых и многого другого.


Кинетику реакций можно исследовать либо изотермически, либо при изменении температуры с заданной скоростью. Специальный макрос в библиотеке методов позволяет оценивать степень кросс-сшивания и анализировать переход золь-гель. Другое приложение, Фото ДМТА, используется для изучения отверждения материала, инициированного УФ светом.

Температурный тест при кручении, видна область стеклования

Температурный тест при растяжении, видна область стеклования

УФ-отверждение и скорость кросс-сшивания

Используйте ваш реометр для... Реологии крахмала

Система для реологии крахмала

Система для реологии крахмала превращает ваш реометр МСR в платформу для анализа гелеобразования крахмала при заданных температуре и давлении.

Высокие скорости нагрева и охлаждения, необходимые для измерений гелеобразования крахмала, достигаются комбинированием электрического нагрева с жидкостным циркуляционным охлаждением. Специальная мешалка предотвращает седиментацию в жидкой фазе.

Система может использоваться для тестов крахмала при обычном давлении при температурах до 95 °C, а при оснащении специальной ячейкой для измерений под давлением (макс. 6 бар), даже позволяет быстро нагревать образец вплоть до 160 °C. Благодаря специально созданной тестовой программе, можно имитировать условия любого реального производства, например, стерилизацию пищи.

Легко перенастраиваемые автоматические тимплаты с предустановленными интервалами нагрева, выдерживания и охлаждения, упрощают процесс настройки перед измерением и обеспечивают все необходимые результаты анализа крахмала, такие, как температура гелеобразования, пиковая вязкость и итоговая вязкость.

Два примера ниже иллюстрируют воспроизводимость Системы для реологии крахмала при тестировании крахмала.

Характеристики системы для реологии крахмала	
Диапазон момента	50 нНм - 200 мНм*
Диапазон скоростей	10 ⁻⁷ - 3000 об/мин
Температурный диапазон	0 °C - 160 °C
Макс. скорости нагрева и охлаждения	30 К/мин
Опция измерения под давлением	Макс. давление 6 бар

*зависит от используемой модели реометра

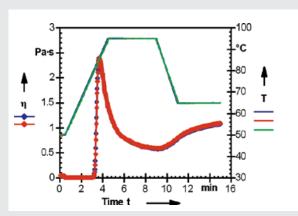


Рис. 1: Гелеобразование кукурузного крахмала

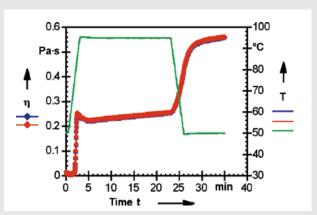
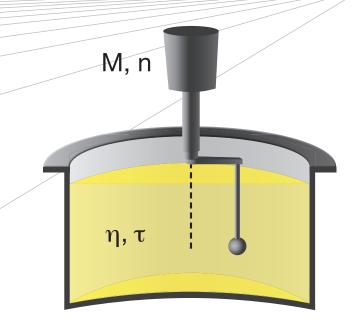


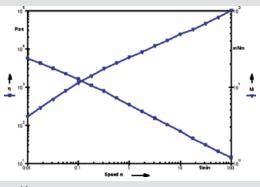
Рис. 2: Гелеобразование модифицированного парафинистого кукурузного крахмала

Используйте ваш реометр для... Реологии образцов с крупными частицами

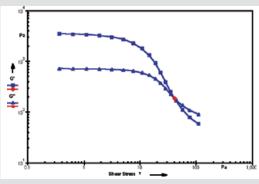
Ячейка для строительных материалов

Ячейка для строительных материалов (ВМС) специально разработана для реологических измерений строительных материалов с большими частицами, она даёт информацию об эксплуатационных возможностях, сроке годности и текучести. Строительные материалы чаще всего представляют собой пасты или сильно наполненные суспензии, содержащие большие частицы размером до 5 мм. Они имеют тенденцию к отслаиванию от стенки или разделению во время сдвига в обычных измерительных системах. Специальная конструкция чашки и мешалки ячейки ВМС позволяет устранить эти эффекты. Температура ячейки контролируется элементами Пельтье, а все поверхности, контактирующие с образцом, сделаны из нержавеющей стали, которая легко очищается и устойчива к абразивному старению. Она легко устанавливается во все модели реометров серии MCR и может использоваться во всех типах реологических тестов.




Шаровая измерительная система

Шаровая измерительная система (BMS) используется в комбинации с реометрами MCR для измерения свойств течения образцов с очень большими частицами.


Система основана на принципе Mueller-Thyrach (эксцентрично вращающаяся сфера). Эта сфера может иметь разные диаметры, в зависимости от вязкости образца. Благодаря непревзойдённому контролю скорости в синхронном приводе серии МСR, полные кривые течения и вязкости определяются за один оборот измерительной системы.

Свойства течения образцов с большими частицами (например, жидкая глина, пульпа, продукты питания) могут быть определены во время одного поворота геометрии; безразмерный анализ получаемого поля течения позволяет производить онлайн расчёт таких реологических параметров, как вязкость и скорость сдвига.

Кривая течения штукатурки на основе песка, полученная в ячейке BMC

Амплитудный тест штукатурки на основе песка, полученный в ячейке BMC

Используйте ваш реометр для... Межфазной реологии

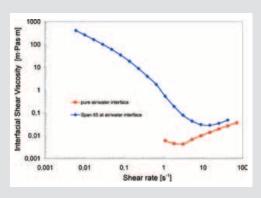
Система для межфазной реологии

Система для межфазной реологии (IRS) в комбинации с реометром MCR позволяет проводить двумерные реологические измерения межфазных плёнок на границах раздела жидкость/жидкость и газ/жидкость.

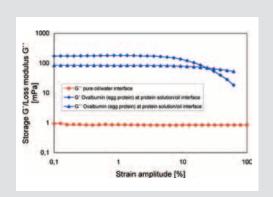
В ячейке IRS, измерительная система в виде двойного конуса размещается точно на границе раздела фаз, позволяя измерять, к примеру, плёнки, образованные белками или ПАВами. Благодаря возможностям работы с очень малыми моментами и технологии TruStrainTM реометра MCR, ячейка IRS позволяет проводить реологические измерения самых слабых межфазных структур.

Температура контролируется элементами Пельтье в диапазоне от 5 °C до 70 °C; запатентованный датчик нормального усилия, находящийся в воздушных подшипниках реометра МСР, позволяет точно позиционировать двойной конус на границе раздела фаз.

Анализ гидродинамического поля течения позволяет вычесть вклад массы жидкости снизу и жидкости/газа сверху и рассчитать нужные параметры измеряемого межфазного слоя.


Измерения могут проводиться в ротационном или осцилляционном режимах, например, можно получать кривые течения и проводить тесты на ползучесть межфазного слоя или проводить осцилляционные тесты во время процесса формирования межфазной плёнки.

Все измеренные и рассчитанные данные записываются и отображаются в программном обеспечении реометра, в нём также находятся готовые тимплаты межфазных реологических измерений для простоты и удобства работы.


Характеристики системы для межфазной реологии

Измерительная геометрия	Двойной конус с радиусом 34.14 мм и углом 10° (2 x 5°)
Температура	5 °C - 70 °C
Аксессуары	P-PTD 200/80/I
Программа	Анализ межфазных полей течения

Характеристики образца	
Межфазная плёнка	Образец растворённый в растворителе
Абсорбированная межфазная плёнка	Образец растворён в массе жидкости
Возможные фазы	Воздух или жидкость

Интерфейс воздух/жидкость

Интерфейс жидкость/жидкость

Используйте ваш реометр для... Трибологии

Трибологическая система

Трибологическая система (T-PTD 200) превращает ваш реометр MCR в полнофункциональный трибометр, работающий по принципу шарика на трёх плоскостях (шарик на пирамиде).

Для трибологических измерений система использует быстрый и точный контроль нормального усилия, а также превосходные возможности по диапазону скорости вращения и вращающего момента реометра МСР. Система позволяет проводить тесы на износ материала, а также измерять кривые Штрибека, делать тесты на статическое трение и нестандартные измерения систем с лубрикантами. Специальная опция роликовых подшипников позволяет проводить тесты на эффективность смазки прямо в роликовых подшипниках.

Трибологическая система была разработана совместно с Вернером Штером (Dr. Tillwich GmbH, Германия), она состоит из держателя образца, который помещён на специально разработанную пружинную систему, позволяющую ему двигаться в трёх направлениях. Это гарантирует концентрическое позиционирование и одинаковую нагрузку во всех точках контакта, когда шарик прижимается к пластинам. Этот шарик является вторым партнёром трения, он размещён на штоке и приводится в движение приводом МСР реометра. Данная конструкция позволяет легко менять шарики и пластины, чтобы реализовывать разные варианты трибологических тестов материала.

Благодаря использованию элементов Пельтье в непосредственной близости от держателя пластин и специальному активному кожуху на элементах Пельтье, закрывающему всю систему сверху, гарантируется превосходный контроль температуры в диапазоне от -40 °C до 200 °C.

Удобное программное обеспечение позволяет быстро и легко задавать осцилляционные и ротационные тесты, благодаря включенным в базу данных готовых методов для измерения кривых Штрибека и тестов на статическое трение, в нём также отображаются все измеряемые и рассчитываемые трибологические параметры.

На рисунке 2 показан пример теста на трение между шариком из нержавеющей стали и пластинами из полиоксиметилена (ПОМ). Была задана постоянная нагрузка (Нормальная Нагрузка F_N) величиной 6 N, скорость вращения увеличивали от 0 до 500 об/мин (коэффициент трения f рассчитывался как: $f = F_R/F_N$, где F_R - Сила Трения, F_N - Нормальная Нагрузка).

Характеристики трибологической системы	
Диапазон нормального нагружения	1 H - 70 H
Макс. скорость вращения	3000 об/мин
Макс. скорость скольжения	1.41 m/c
Макс. момент	200 мНм
Макс. сила трения	58.8 H
Измерение шариковых подшипников	Опционально

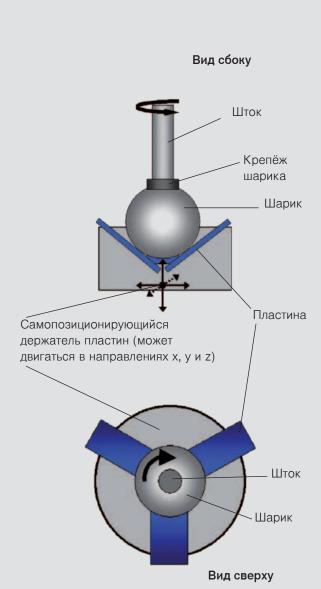


Рис. 1: Устройство трибологической ячейки

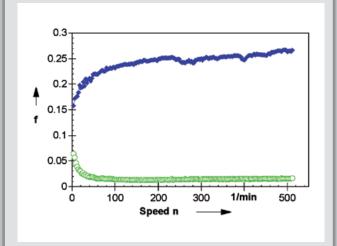


Рис. 2: Тест на сухое трение стали/полимера (синяя кривая) и трение со смазкой (зелёная кривая)

Photos: Croce & Wir

Характеристики могут меняться без предварительного уведомления