
## **Zwick**Materials Testing

### **Product Information**

Robotic Testing System 'roboTest C' (Compact)



Robotic testing system 'roboTest C' with testing machine 600 kN



Pincer gripper removes a specimen from the magazine

### **Applications**

The robotic testing system is used for the fully automatic performance of tensile tests on:

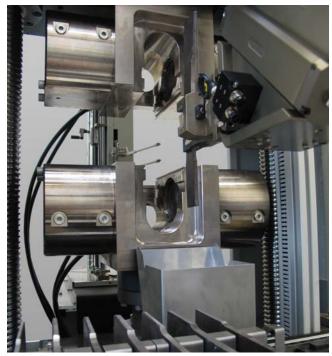
- Metal specimens

   (e.g. according to DIN EN10002-1, JIS Z2201, ASTM E8)
- Dimensionally stable specimens of other materials

### **System Configuration**

- Materials testing machine 300 kN up to 600 kN with symmetrically closing hydraulic specimen grips and an optional extensometer
- Robotic feeding system 'roboTest C' with magazine for 24 or 40 specimens
- Industry Controller with test software testXpert® and automation software autoEdition2

### Advantages of the Robotic Testing System 'roboTest C'


- A high reproducibility of the test results is obtained because operator influences are excluded (hand temperature, moist hands, eccentric or inclined insertion of specimens etc.).
- Qualified laboratory staff is relieved of routine jobs and is thus available for more complex activities.
- The machine can be used during idle times (break, night shift) thus increasing the rate of utilization and allowing "quicker" results.
- The system reduces the testing costs per specimen and usually pays off within one to two years.
- Manual tests are still possible by simply pushing the robotic feeding system aside.
- The automatic data logging system ensures secure documentation and enables statistical long-term monitoring (Statistical Process Control).



# **Zwick**Materials Testing

## **Product Information**

Robotic Testing System 'roboTest C' (Compact)



Feeding of the specimen to the testing machine

### **Test Sequence**

- The user fills the specimen magazine directly on the test system. A refilling of specimens in magazine places that were not yet worked off is possible at any time.
- The specimen data (ident number, width, thickness,...) are entered on the PC. In barcode operation this step can be omitted.
- After the startup of the system on the PC, specimen feed, tensile test and removal of the specimen fragments are carried out automatically.

#### **Technical Data**

| Mechanics              |                             |
|------------------------|-----------------------------|
| Mounting               | coupled to the load frame   |
| Capacity               | 24 specimens / 40 specimens |
| Dimensions (H x W x D) | 2200 x 2600 x 800 mm        |
| Weight                 | approx. 200 kg              |
|                        | (without specimen)          |

| Connected values        |                 |
|-------------------------|-----------------|
| Electrical connection   | 3x 400V 3L/N/PE |
| Output                  | 2 kVA           |
| Mains frequency         | 50/60 Hz        |
| Compressed air          | 6 bar           |
| Required compressed air | 10 lpm          |

| Control               |              |
|-----------------------|--------------|
| Automation            | autoEdition2 |
| Peripheral connection | PROFIBUS     |

| dumbbells, stripes, tubes, |
|----------------------------|
| round or profile specimens |
| dimensionally stable,      |
| non-adhesive               |
| max. 5 kg                  |
| max. 450 mm                |
| max. 60 mm                 |
| max. 30 mm                 |
|                            |

### **Options**

- Specimen identification by barcode
- Specimen remains sorting
- Data exchange with superior processorsystems (e.g. LIMS) via upload/download of ASCII-files or ODBC
- Optical status indicator by threefold "traffic light" (running, refill specimens/finished, error)