


Рассольно-водяной тепловой насос для больших зданий

# **Compress 7000 LW**

54-2 LW - 80-2 LW



Инструкция по монтажу

#### Содержание Пояснения символов и указания по технике 1.1 1.2 Комплект поставки ...... 4 3 Приспособления для монтажа и транспортировки (установка друг над другом) ...... 5 5 6 Подключения, монтажные расстояния и размеры ...... 8 Подключения теплового насоса (54-80 кВт) ......8 6.2 Расстояния до стен при установке теплового насоса 6.3 Размеры теплового насоса (54-80 кBт) ........... 9 7 Монтаж/демонтаж облицовки ...... 10 8 8.1 8.2 9.1 Применение по назначению ...... 15 9.2 9.3 9.4 Монтаж облицовки ...... 15 9.5 Транспортировка, монтаж и хранение ........... 15 9.6 9.7 9.8 Монтаж дисплея управления Rego ...... 15 9.9 9.10

| .1 | Устан | овка котла 16                                       |
|----|-------|-----------------------------------------------------|
|    | 11.1  | Рассольный контур                                   |
|    | 11.2  | Отопительная система                                |
|    | 11.3  | Выбор места монтажа                                 |
|    | 11.4  | Монтаж трубопроводов                                |
|    | 11.5  | Промывка труб отопления                             |
|    | 11.6  | Установка17                                         |
|    | 11.7  | Теплоизоляция                                       |
|    | 11.8  | Монтаж датчиков температуры                         |
|    | 11.9  | Заполнение системы отопления/горячего               |
|    |       | водоснабжения                                       |
| 2  | Элект | рические соединения18                               |
|    | 12.1  | Электросхемы                                        |
|    | 12.2  | Другие электросхемы                                 |
|    | 12.3  | Схема соединений для EVU/SG                         |
|    | 12.4  | EVU 1, только отключение электрического нагревателя |
|    | 12.5  | EVU 2, только отключение компрессора 34             |
|    | 12.6  | EVU 3, отключение компрессора и электрического      |
|    |       | нагревателя                                         |
|    | 12.7  | SmartGrid35                                         |
| 3  | -     | циональный контроль                                 |
|    | 13.1  | Контур хладагента                                   |
|    | 13.2  | Давление заполнения в рассольном контуре 36         |
|    | 13.3  | Рабочее давление в отопительной системе 36          |
| 4  | Техни | ческое обслуживание                                 |
| 5  | Защи  | га окружающей среды40                               |

#### Пояснения символов и указания по технике безопасности

#### 1.1 Пояснения условных обозначений

#### Предупреждения



Предупреждения обозначены в тексте восклицательным знаком в треугольнике. Выделенные слова в начале предупреждения обозначают вид и степень тяжести последствий, наступающих в случае непринятия мер безопасности.

Следующие слова определены и могут применяться в этом документе.

- УВЕДОМЛЕНИЕ означает, что возможно повреждение оборудования.
- ВНИМАНИЕ означает, что возможны травмы лёгкой и средней тяжести.
- **ОСТОРОЖНО** означает возможность получения тяжёлых вплоть до опасных для жизни травм.
- ОПАСНО означает получение тяжёлых вплоть до опасных для жизни травм.

#### Важная информация



Важная информация без каких-либо опасностей для человека и оборудования обозначается приведенным здесь знаком.

#### Другие знаки

| Знак          | Значение                            |
|---------------|-------------------------------------|
| <b>&gt;</b>   | Действие                            |
| $\rightarrow$ | Ссылка на другое место в инструкции |
| •             | Перечисление/список                 |
| -             | Перечисление/список (2-ой уровень)  |

Таб. 1

#### 1.2 Общие правила техники безопасности

Данные инструкции предназначаются для техников и специалистов в области сантехники, теплоснабжения и электротехники.

- ► Внимательно изучите все инструкции по установке и монтажу соответствующего оборудования (теплового насоса, регулятора и т. д.) до начала монтажно-установочных работ.
- Соблюдайте инструкции по технике безопасности и следуйте предупреждениям.
- Соблюдайте действующие национальные и региональные нормы и предписания, технические правила и инструкции.
- Регистрируйте все виды выполненных работ.

#### Предусмотренное применение

Данный тепловой насос предназначен исключительно для применения в качестве теплогенератора в закрытых водяных отопительных системах жилых помешений.

Любое другое применение является недопустимым. За возможный ущерб, понесенный в результате такого несоответствующего применения, компания ответственности не несет.

# Монтажно-установочные и пусконаладочные работы и техническое обслуживание

Монтажно-установочные и пусконаладочные работы, а также техническое обслуживание допускается производить только уполномоченной организации.

▶ Используйте только оригинальные запасные части.

#### Работы с электрикой

Работы с электрикой разрешается выполнять только специалистам по электромонтажу.

- Перед работами с электрикой:
  - Отключите сетевое напряжение на всех фазах и обеспечьте защиту от случайного включения.
  - Проверьте отсутствие напряжения.
- ▶ Пользуйтесь электрическими схемами других частей установки.

#### Передача владельцу

При передаче проинструктируйте владельца о правилах обслуживания и условиях эксплуатации отопительной системы.

- Объясните основные принципы обслуживания, при этом обратите особое внимание на действия, влияющие на безопасность.
- Укажите на то, что переделку или ремонт оборудования разрешается выполнять только сотрудникам специализированного предприятия, имеющим разрешение на выполнение таких работ.
- Укажите на необходимость проведения контрольных осмотров и технического обслуживания для безопасной и экологичной эксплуатации оборудования.
- Передайте владельцу для хранения инструкции по монтажу и техническому обслуживанию.

#### 2 Комплект поставки

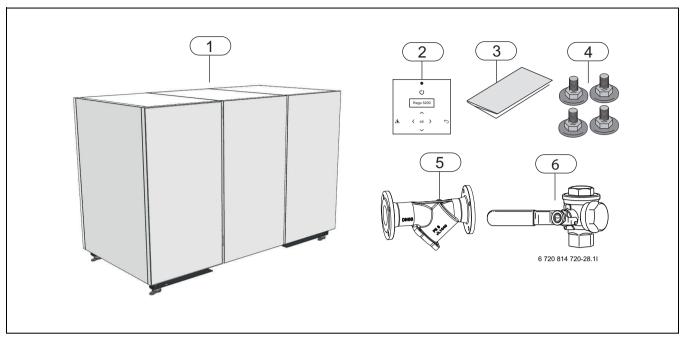



Рис. 1 Комплект поставки теплового насоса

- [1] Тепловой насос
- [2] Дисплей управления Rego 5200
- [3] Инструкции по монтажу и эксплуатации
- [4] Опорные ножки
- [5] Фланцевый фильтр (контур рассола)
- [6] Шаровой кран (DN 50, отопительная система)

#### 2.1 Дополнительное оборудование

- Электрический дополнительный нагреватель
- Станция свежей воды
- Ограничитель тока
- Датчики температуры
- Устройство для заполнения
- 3-ходовой клапан с электродвигателем
- Многофункциональный регулятор/датчик комнатной температуры
- Шаровой кран DN 20, 25, 32, 40, 50
- Высокоэффективные циркуляционные насосы для отопительной системы
- Модуль управления контуром со смесителем
- Комплект для бокового подключения вверх и для подключения на задней стороне
- Комплект для штабельной установки каскада

### 3 Приспособления для монтажа и транспортировки (установка друг над другом)



**ОПАСНО:** опасность получения травм. Тепловой насос в зависимости от модели весит до 500 кг.

► Никогда не поднимайте тепловой насос без вспомогательных средств.

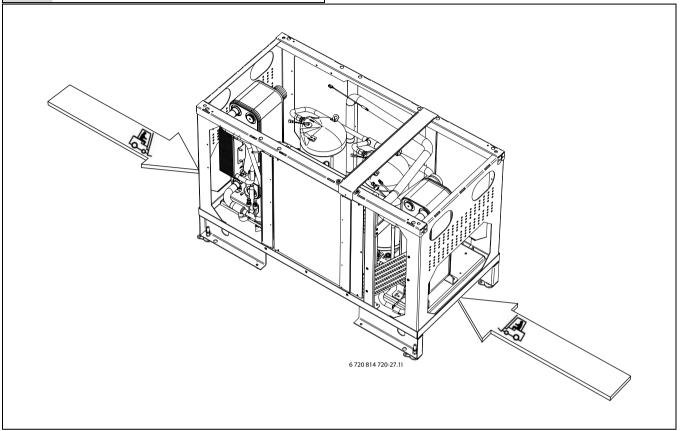



Рис. 2 Для монтажа теплового насоса используйте вилочный погрузчик и транспортные тележки.



**ОСТОРОЖНО:** Не наклоняйте тепловой насос при монтаже более чем на 30°. Допускается кратковременный наклон до 45°. В этом случае тепловой насос перед пуском должен простоять некоторое время вертикально.

## 4 Подъём теплового насоса



**ОПАСНО:** опасность получения травм. Тепловой насос в зависимости от модели весит до 500 кг.

► Никогда не поднимайте тепловой насос без вспомогательных средств.

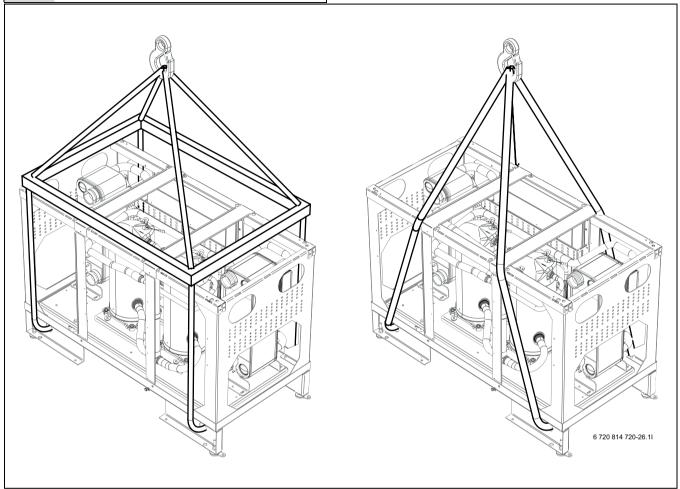



Рис. З Два способа подъёма теплового насоса (54-80 кВт) с распорной рамой и без неё.



**ОСТОРОЖНО:** Не наклоняйте тепловой насос при монтаже более чем на 30°. Допускается кратковременный наклон до 45°. В этом случае тепловой насос перед пуском должен простоять некоторое время вертикально.

## 5 Установка тепловых насосов друг на друга



**ОСТОРОЖНО:** Не наклоняйте тепловой насос при монтаже более чем на 30°. Допускается кратковременный наклон до 45°. В этом случае тепловой насос перед пуском должен простоять некоторое время вертикально.

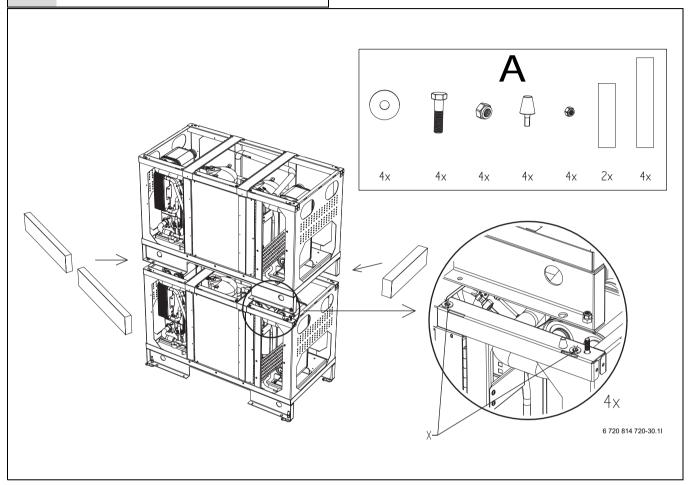



Рис. 4 Пример установки двух тепловых насосов друг на друга

[A] Информация о комплекте для штабельной установки приведена в отдельной инструкции об установке насосов друг на друга.

## 6 Подключения, монтажные расстояния и размеры

#### 6.1 Подключения теплового насоса (54-80 кВт)

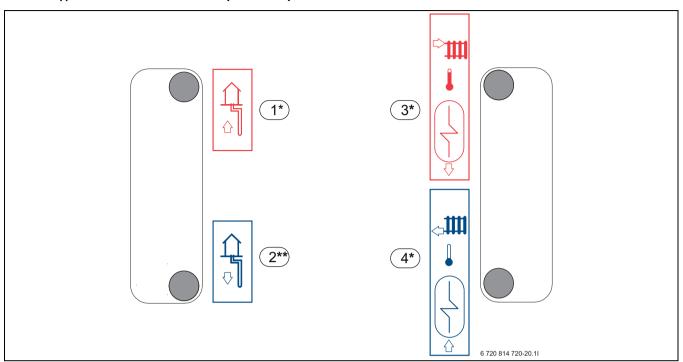



Рис. 5 Подключения теплового насоса (54–80 кВт)

- [1] Вход рассольного контура
- [2] Выход рассольного контура
- [3] Подающая линия отопления
- [4] Обратная линия отопления
- [\*] Подключение может быть выполнено назад, вверх или в сторону.
- [\*\*] Подключение может быть выполнено назад или в сторону.

#### 6.2 Расстояния до стен при установке теплового насоса (54-80 кВт)

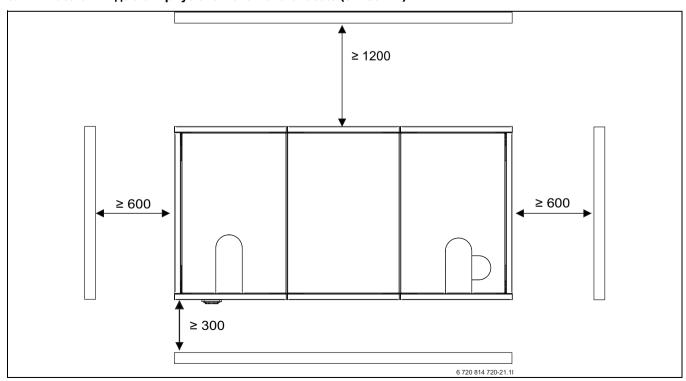



Рис. 6 Расстояния до стен при установке теплового насоса

## 6.3 Размеры теплового насоса (54-80 кВт)

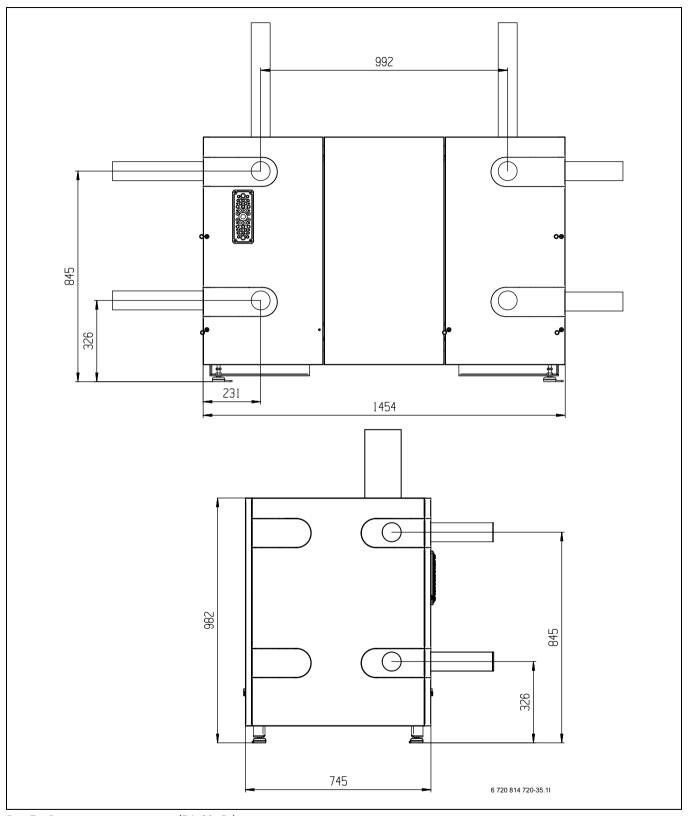



Рис. 7 Размеры теплового насоса (54-80 кВт)



Все размеры приведены в миллиметрах при полностью завёрнутых опорных ножках.

# 7 Монтаж/демонтаж облицовки

Облицовка теплового насоса поставляется в отдельной упаковке. Монтаж облицовки см. далее:



Установите облицовку с кабельным вводом во время монтажа. Обязательно начинайте со средней облицовки спереди и сзади. Затем монтируйте остальные части облицовки.

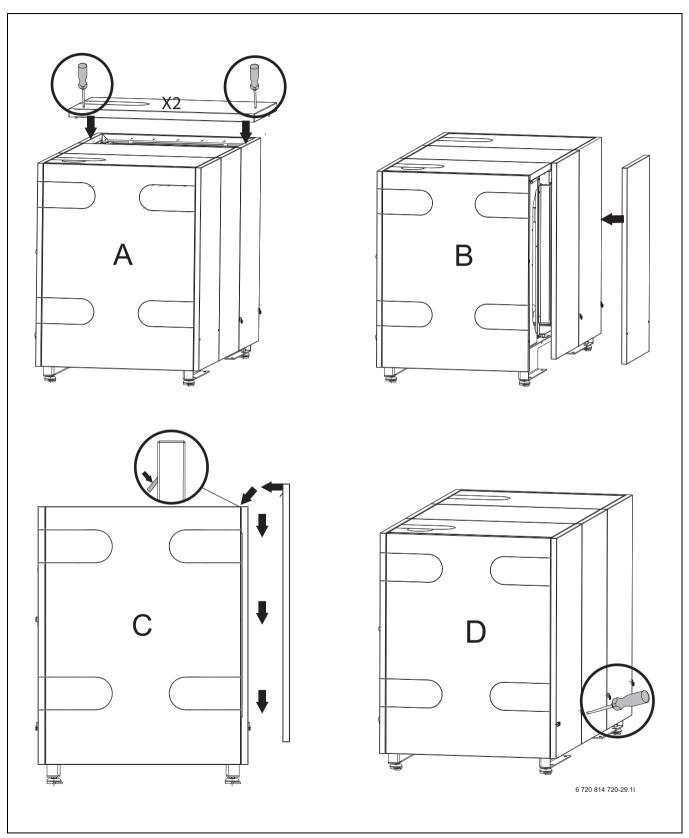



Рис. 8 Монтаж/демонтаж облицовки

#### 8 Технические рекомендации

#### 8.1 Конструкция теплового насоса

#### 8.1.1 Тепловой насос (54-80 кВт)

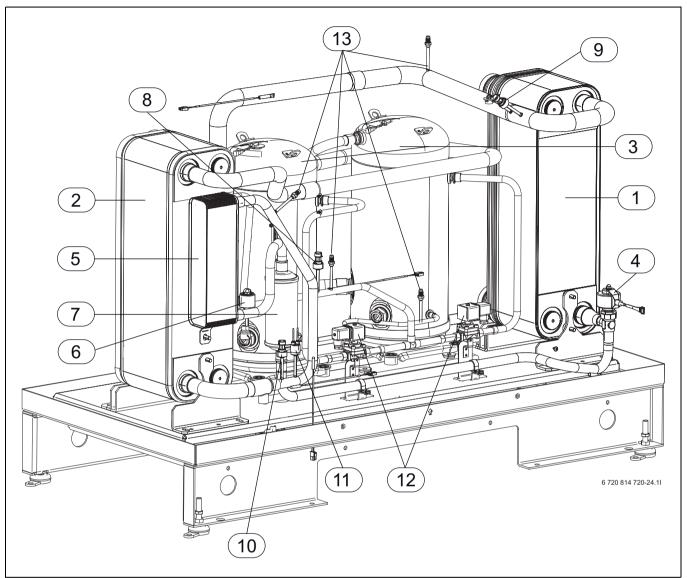



Рис. 9 Компоненты теплового насоса (54-80 кВт)

- [1] Испаритель
- [2] Конденсатор
- [3] Компрессор (1/2)
- [4] Электронный расширительный клапан
- [5] Экономайзер
- [6] Расширительный клапан экономайзера
- [7] Фильтр-осушитель (монтируется, если вскрывался контур хладагента)
- [8] Датчик давления (экономайзер)
- [9] Датчик низкого давления
- [10] Датчик высокого давления
- [11] Прессостат высокого давления
- [12] Электромагнитные клапаны
- [13] Сервисный выход/клапан Шредера (4)

# 8.2 Технические характеристики

# 8.2.1 Тепловой насос (54-80 кВт)

|                                                                               | Ед.изм.        | 54-2 LW      | 64-2 LW      | 72-2 LW      | 80-2 LW      |
|-------------------------------------------------------------------------------|----------------|--------------|--------------|--------------|--------------|
| Рассол/вода                                                                   |                |              |              |              |              |
| SCOP для теплых полов, холодный климат                                        |                | 5,54         | 5,41         | 5,34         | 5,31         |
| SCOP для отопления радиаторами, холодный климат                               |                | 4,44         | 4,34         | 4,37         | 4,34         |
| Отдаваемая мощность/COP (0/35) EN14511 (уровень 1)                            | кВт            | 28,26/ 4,82  | 32,88 / 4,77 | 37,84 / 4,70 | 41,69 / 4,72 |
| Отдаваемая мощность/COP (0/35) EN14511 (уровень 2)                            | кВт            | 54,17 / 4,53 | 63,93 / 4,42 | 72,83 / 4,39 | 78,54 / 4,30 |
| Отдаваемая мощность/COP (0/45) EN14511 (уровень 1)                            | кВт            | 28,41/3,79   | 33,52 / 3,84 | 38,03 / 3,82 | 41,73/3,82   |
| Отдаваемая мощность/COP (0/45) EN14511 (уровень 2)                            | кВт            | 56,15 / 3,68 | 64,72/3,59   | 73,81 / 3,62 | 80,67 / 3,56 |
| Потребляемая мощность/СОР (0/55) EN14511 (уровень 2)                          | кВт            | 18,33/3,12   | 21,62 / 2,96 | 24,7 0/ 2,99 | 26,69/3,04   |
| Рассольный контур                                                             |                |              |              |              |              |
| Подключение труб рассольного контура                                          | ММ             |              | Victa        | ılic 76,1    |              |
| Подключение труб теплоносителя                                                | ММ             |              | Victa        | ılic 76,1    |              |
| Рабочее давление в рассольной системе, макс./мин.                             | бар            |              | 6            | /1,5         |              |
| Температура рассола на входе, макс./мин.                                      | °B             |              | 3            | 0/-5         |              |
| Температура рассола на выходе рассольного контура макс./мин.                  | °B             |              | 1            | 5/-8         |              |
| Концентрация этиленгликоля макс./мин.                                         | % по<br>объёму |              | 3            | 5/30         |              |
| Концентрация этанола макс./мин.                                               | % по<br>объёму | 29/27        |              |              |              |
| Концентрация пропиленгликоля                                                  | %              |              |              | 30           |              |
| Номинальный расход в рассольном контуре (этиленгликоль 30%) ( $\Delta$ 3°C)   | л/с            | 3,4          | 4,0          | 4,6          | 5,0          |
| Номинальный расход в рассольном контуре (этанол 25% по массе) ( $\Delta$ 3°C) | л/с            | 3,1          | 3,7          | 4,3          | 4,6          |
| Внутренняя потеря давления в рассольном контуре (этиленгликоль 30%)           | кПа            | 23           | 29           | 22           | 25           |
| Внутренняя потеря давления в рассольном контуре (этанол 25 % по массе)        | кПа            | 19           | 24           | 18           | 21           |
| Отопительная система                                                          |                |              |              |              |              |
| Номинальный расход теплоносителя (T = 8°C)                                    | л/с            | 1,6          | 1,9          | 2,2          | 2,4          |
| Минимальный расход теплоносителя (T = 10°C)                                   | л/с            | 1,3          | 1,5          | 1,8          | 1,9          |
| Рабочее давление в отопительной системе макс./мин.                            | бар            |              | 6            | /1,5         |              |
| Внутренняя потеря давления теплоносителя                                      | кПа            | 13           | 14           | 16           | 15           |
| Компрессор                                                                    |                |              |              |              |              |
| Компрессор                                                                    |                |              | Вин          | товой        |              |
| Макс. температура подающей линии                                              | °B             |              |              | 68           |              |
| Хладагент R410A (CO <sub>2</sub> e)                                           | (тонны)        | 19,8         | 19,4         | 22,1         | 22,6         |
| Звуковая мощность <sup>1)</sup> (уровень 1–2)                                 | дБА            |              | 5            | 7-63         |              |

Таб. 2 Техническая документация

|                                                                                                          | Ед.изм. | 54-2 LW           | 64-2 LW    | 72-2 LW        | 80-2 LW    |
|----------------------------------------------------------------------------------------------------------|---------|-------------------|------------|----------------|------------|
| Электрические характеристики                                                                             |         |                   |            |                |            |
| Электрический монтаж                                                                                     |         |                   | 400 B 3 N~ | 50 Гц (+/-10%) |            |
| Электрический нагреватель (внешний)                                                                      | кВт     |                   | 6          | - 42           |            |
| Предохранитель gL- gG / характеристика D (автоматический) без циркуляционных насосов                     | А       | 50                | 63         | 80             | 80         |
| Максимальное полное сопротивление короткого замыкания с<br>ограничителем/без ограничителя пускового тока | Ω       | 0,47 / 0,26       | 0,47/0,21  | 0,42/0,15      | 0,46/0,15  |
| Пусковой ток с ограничителем/без ограничителя пускового тока <sup>2)</sup>                               | Α       | 40/97,5           | 47/105     | 63,5/141       | 61,3/135,4 |
| Макс. рабочий ток без циркуляционных насосов                                                             | Α       | 45                | 55         | 68,5           | 71,5       |
| Общие характеристики                                                                                     |         |                   |            |                |            |
| Размеры (ширина x глубина x высота)                                                                      | ММ      | 1450 x 750 x 1000 |            |                |            |
| Macca                                                                                                    | КГ      | 460               | 470        | 480            | 490        |

#### Таб. 2 Техническая документация

<sup>1)</sup> Звуковая мощность - это акустическая энергия, выдаваемая насосом независимо от окружающей среды. Уровень звукового давления, наоборот, зависит от окружающей среды и на расстоянии 1 м в свободном пространстве примерно на 11 дБА меньше.

<sup>2)</sup> Согласно EN 50160.

#### 8.2.2 Характеристики датчика температуры (I/O), Rego 5200

Таблица зависимости сопротивления от температуры датчика РТ1000

| °C  | Ω      | °C | Ω      | °C | Ω      | °C | Ω      | °C  | Ω      |
|-----|--------|----|--------|----|--------|----|--------|-----|--------|
| -20 | 921,6  | 9  | 1035,1 | 38 | 1147,7 | 67 | 1259,2 | 96  | 1369,8 |
| -19 | 925,5  | 10 | 1039,0 | 39 | 1151,5 | 68 | 1263,1 | 97  | 1373,6 |
| -18 | 929,5  | 11 | 1042,9 | 40 | 1155,4 | 69 | 1266,9 | 98  | 1377,4 |
| -17 | 933,4  | 12 | 1046,8 | 41 | 1159,3 | 70 | 1270,7 | 99  | 1381,2 |
| -16 | 937,3  | 13 | 1050,7 | 42 | 1163,1 | 71 | 1274,5 | 100 | 1385,0 |
| -15 | 941,2  | 14 | 1054,6 | 43 | 1167,0 | 72 | 1278,4 | 101 | 1388,8 |
| -14 | 945,2  | 15 | 1058,5 | 44 | 1170,8 | 73 | 1282,2 | 102 | 1392,6 |
| -13 | 949,1  | 16 | 1062,4 | 45 | 1174,7 | 74 | 1286,0 | 103 | 1396,4 |
| -12 | 953,0  | 17 | 1066,3 | 46 | 1178,5 | 75 | 1289,8 | 104 | 1400,2 |
| -11 | 956,9  | 18 | 1070,2 | 47 | 1182,4 | 76 | 1293,7 | 105 | 1403,9 |
| -10 | 960,9  | 19 | 1074,0 | 48 | 1186,2 | 77 | 1297,5 | 106 | 1407,7 |
| -9  | 964,8  | 20 | 1077,9 | 49 | 1190,1 | 78 | 1301,3 | 107 | 1411,5 |
| -8  | 968,7  | 21 | 1081,8 | 50 | 1194,0 | 79 | 1305,1 | 108 | 1415,3 |
| -7  | 972,6  | 22 | 1085,7 | 51 | 1197,8 | 80 | 1308,9 | 109 | 1419,1 |
| -6  | 976,5  | 23 | 1089,6 | 52 | 1201,6 | 81 | 1312,7 | 110 | 1422,9 |
| -5  | 980,4  | 24 | 1093,5 | 53 | 1205,5 | 82 | 1316,6 | 111 | 1426,6 |
| -4  | 984,4  | 25 | 1097,3 | 54 | 1209,3 | 83 | 1320,4 | 112 | 1430,4 |
| -3  | 988,3  | 26 | 1101,2 | 55 | 1213,2 | 84 | 1324,2 | 113 | 1434,2 |
| -2  | 992,2  | 27 | 1105,1 | 56 | 1217,0 | 85 | 1328,0 | 114 | 1438,0 |
| -1  | 996,1  | 28 | 1109,0 | 57 | 1220,9 | 86 | 1331,8 | 115 | 1441,7 |
| 0   | 1000,0 | 29 | 1112,8 | 58 | 1224,7 | 87 | 1335,6 | 116 | 1445,5 |
| 1   | 1003,9 | 30 | 1116,7 | 59 | 1228,6 | 88 | 1339,4 | 117 | 1449,3 |
| 2   | 1007,8 | 31 | 1120,6 | 60 | 1232,4 | 89 | 1343,2 | 118 | 1453,1 |
| 3   | 1011,7 | 32 | 1124,5 | 61 | 1236,2 | 90 | 1347,0 | 119 | 1456,8 |
| 4   | 1015,6 | 33 | 1128,3 | 62 | 1240,1 | 91 | 1350,8 | 120 | 1460,6 |
| 5   | 1019,5 | 34 | 1132,2 | 63 | 1243,9 | 92 | 1354,6 | 121 | 1464,4 |
| 6   | 1023,4 | 35 | 1136,1 | 64 | 1247,7 | 93 | 1358,4 | 122 | 1468,1 |
| 7   | 1027,3 | 36 | 1139,9 | 65 | 1251,6 | 94 | 1362,2 | 123 | 1471,9 |
| 8   | 1031,2 | 37 | 1143,8 | 66 | 1255,4 | 95 | 1366,0 | 124 | 1475,7 |

Таб. 3 Характеристики датчика температуры РТ 1000

#### 8.2.3 Характеристики датчика температуры (I/O), карта НР

Таблица зависимости сопротивления датчика NTC, от температуры. Для датчиков температуры, подключенных к тепловому насосу, и датчиков температуры в тепловом насосе (R0, R40, датчики горячих газов) действуют значения из таб. 4-6.

| °C  | Ω <sub>T</sub> | °C | Ω <sub>T</sub> | °C | $\Omega_{T}$ |
|-----|----------------|----|----------------|----|--------------|
| -40 | 154300         | 5  | 11900          | 50 | 1696         |
| -35 | 111700         | 10 | 9330           | 55 | 1405         |
| -30 | 81700          | 15 | 7370           | 60 | 1170         |
| -25 | 60400          | 20 | 5870           | 65 | 980          |
| -20 | 45100          | 25 | 4700           | 70 | 824          |
| -15 | 33950          | 30 | 3790           | 75 | 696          |
| -10 | 25800          | 35 | 3070           | 80 | 590          |
| -5  | 19770          | 40 | 2510           | 85 | 503          |
| 0   | 15280          | 45 | 2055           | 90 | 430          |

Таб. 4 Датчик RO (ТВО, ТВ1, ТR2, ТR5)

| °C | Ω     | °C | Ω    | °C | Ω    | °C | Ω    |
|----|-------|----|------|----|------|----|------|
| 20 | 12488 | 40 | 5331 | 60 | 2490 | 80 | 1256 |
| 25 | 10001 | 45 | 4372 | 65 | 2084 | 85 | 1070 |
| 30 | 8060  | 50 | 3605 | 70 | 1753 | 90 | 915  |
| 35 | 6536  | 55 | 2989 | 75 | 1480 | -  | -    |

Таб. 5 Датчик R40 (TC3, TR3)

| °C  | Ω       | °C | Ω     | °C  | Ω    | °C  | Ω    |
|-----|---------|----|-------|-----|------|-----|------|
| -40 | 2889.60 | 25 | 86.00 | 90  | 7.87 | 160 | 1.25 |
| -30 | 1522.20 | 30 | 69.28 | 100 | 5.85 | 170 | 1.01 |
| -20 | 834.72  | 40 | 45.81 | 110 | 4.45 | 180 | 0.83 |
| -10 | 475.74  | 50 | 30.99 | 120 | 3.35 | 190 | 0.68 |
| ±0  | 280.82  | 60 | 21.40 | 130 | 2.58 |     |      |
| 10  | 171.17  | 70 | 15.07 | 140 | 2.02 |     |      |
| 20  | 107.44  | 80 | 10.79 | 150 | 1.59 |     |      |

Таб. 6 Датчик температуры горячих газов (встроенный, TR6, TR7)

#### 9 Сведения о тепловом насосе



Монтаж должно выполнять только специализированное предприятие, имеющее допуск на выполнение таких работ. Монтажники должны соблюдать действующие нормы и правила, а также требования инструкции по монтажу и эксплуатации.

Тепловой насос предназначен для работы с отдельным баком-водонагревателем.

#### 9.1 Применение по назначению

Тепловой насос должен работать только в закрытой системе отопления или ГВС по EN 12828.

Другое использование считается применением не по назначению. Исключается любая ответственность за повреждения, возникшие в результате применения не по назначению.

#### 9.2 Обзор типов

| Тепловой насос | 54-2 LW | 64-2 LW | 72-2 LW | 80-2 LW |
|----------------|---------|---------|---------|---------|
| кВт            | 54      | 64      | 72      | 80      |

Таб. 7 Обзор типов

[Тепловой насос] Рассольно-водяной тепловой насос [кВт] Теплопроизводительность 0/35 (EN 14511)

#### 9.3 Заводская табличка

Заводская табличка находится в тепловом насосе вверху на клеммной коробке. На ней приведены мощность, номер артикула, серийный номер и дата изготовления теплового насоса.

#### 9.4 Монтаж облицовки

Части облицовки (передние, задние, боковые) прилагаются к тепловому насосу. Смонтируйте облицовку с кабельным вводом уже во время выполнения подключений. После выполнения подключений обязательно начинайте установку облицовки со средних панелей спереди и сзади (информационный листок прилагается).

#### 9.5 Транспортировка, монтаж и хранение

Тепловой насос можно транспортировать и хранить на складе только в вертикальном положении. Не наклоняйте тепловой насос при монтаже более чем на 30°. Допускается кратковременный наклон до 45°. В этом случае тепловой насос перед пуском должен простоять некоторое время вертикально.

Нельзя хранить тепловой насос при температуре ниже  $-10\,^{\circ}\text{C}$ .

#### 9.6 Транспортные крепления

Для защиты от повреждений при транспортировке на тепловом насосе имеются транспортные крепления (отмечены красным цветом). Удалите транспортные крепления.

#### 9.7 Место установки

- Установите тепловой насос на ровную прочную поверхность, способную выдерживать нагрузку не менее 500 кг (при установке друг на друга > 1000 кг).
- Выровняйте тепловой насос изменением высоты опорных ножек
- ▶ Температура в помещении возле теплового насоса должна находиться в пределах от 10 °C до 35 °C.
- Учитывайте уровень шума теплового насоса.

Необходимо наличие стока для воды в помещении, где установлено оборудование. В него будет стекать вода, если образуются протечки в системе. Кроме того, проложите сливной шланг от предохранительного клапана (дополнительное оборудование), через слив в дне к стоку в помещении.

#### 9.8 Монтаж дисплея управления Rego

Тепловой насос поставляется с дисплеем управления Rego, который монтируется на стене и подключается к насосу.

- Смонтируйте дисплей в подходящем месте вблизи от теплового насоса.
- Укоротите прилагаемый кабель до необходимой длины и подсоедините 4 провода к клеммам в 4-полюсном штекере, который подключается к дисплею.
- Откройте клеммную коробку теплового насоса и подсоедините прилагаемый кабель от дисплея к входу Ext. Disp. (контакт 4P4C RJ10) панели управления Rego → (см. рис. 12).

#### 9.9 Проверьте перед монтажом

- Монтаж теплового насоса должны производить специалисты, имеющие допуск к выполнению таких работ.
- Перед пуском заполните отопительную систему, бакводонагреватель и рассольный контур, включая тепловой насос, и выпустите воздух.
- ▶ Проверьте отсутствие повреждений и затяжку всех трубных соединений, так как они могли ослабнуть при транспортировке.
- ▶ Все трубопроводы делайте как можно более короткими, чтобы защитить установку от повреждений во время грозы.
- Выполняйте монтаж теплового насоса, подключение электропитания и рассольного контура в соответствии с действующими нормами и правилами.

#### 9.10 Контрольный лист



Любой монтаж теплового насоса является индивидуальным и отличается от других. В контрольном списке, приведённом далее, даётся общий порядок выполнения монтажных работ.

- 1. Установите насос на ровную поверхность. Выровняйте тепловой насос опорными ножками.
- 2. Смонтируйте узел заполнения, фильтры и клапаны.
- 3. Смонтируйте на тепловом насосе подающую и обратную линию и расширительный бак.
- 4. Подсоедините отопительную установку к отопительной системе.
- Подсоедините датчик наружной температуры и при необходимости датчик комнатной температуры (дополнительное оснашение).
- 6. Заполните отопительный и рассольный контур и выпустите воздух.
- 7. Выполните внешние подключения.
- 8. Подсоедините установку в электрошкафу здания.
- 9. Выполните настройки на панели управления.
- 10. Проверьте установку после пуска.
- 11. При необходимости добавьте рассол.

#### 10 Предписания

Выполняйте следующие нормы и правила:

- Местные нормы и правила предприятия электроснабжения (EVU) с соответствующими особыми предписаниями (TAB)
- EN 60335 (Безопасность электрических приборов для использования в быту и для других подобных целей)
   Часть 1 (Общие требования)

**Часть 2-40** (Особые требования к электрическим тепловым насосам, кондиционерам и комнатным увлажнителям воздуха)

- EN 12828 (Отопительные системы в зданиях проектирование систем отопления и горячего водоснабжения)
- Правила VDI, Verein Deutscher Ingenieure e.V. Postfach 10 11 39 - 40002 Düsseldorf
  - VDI 2035, лист 1<sup>1)</sup>:Предотвращение повреждений и образование накипи в системах отопления и горячего водоснабжения
  - VDI 2035, лист 2 <sup>2)</sup>: Предотвращение коррозии в отопительной системе

#### 11 Установка котла



Монтаж должно выполнять только специализированное предприятие, имеющее допуск на выполнение таких работ. Монтажники должны соблюдать действующие нормы и правила, а также требования инструкции по монтажу и эксплуатации.

#### 11.1 Рассольный контур

#### Монтаж и заполнение

При монтаже и заполнении рассольного контура необходимо соблюдать действующие нормы и правила. Земля, используемая для заполнения зоны вокруг рассольной установки, не должна содержать камни или какие-либо другие предметы. Перед заполнением проверьте рассольный контур давлением, чтобы убедиться, что система герметична.

При отсоединении коллектора следите за тем, чтобы в систему не попала грязь или гравий. Из-за этого возможна остановка теплового насоса и повреждение узлов системы.

# Изоляция рассольных трубопроводов для повышения точки

Все части и трубопроводы рассольного контура должны быть заизолированы, чтобы не допустить снижения точки росы.

#### Расширительный бак, предохранительный клапан, манометр,

Расширительный бак, предохранительный клапан и манометр можно приобрести в специализированных торговых предприятиях.

- Если водопроводная вода имеет более высокий °dH, чем указано в VDI 2035, то на заполняющем трубопроводе отопительной системы установите умягчающий фильтр, чтобы обеспечить исправную работу теплового насоса. Уже при степени жёсткости более 3 °dH со временем ухудшается мощность теплового насоса из-за известковых отложений в теплообменнике.
- 2) Стандарт охватывает проблему, но не устанавливает предельных значений. Поэтому мы дополняем следующими значениями: содержание кислорода О<sub>2</sub> <-1 мг/л, Содержание двуокиси углерода СО<sub>2</sub> <1 мг/л, хлориды СІ <100 мг/л, сульфаты SO4 <100 мг/л. Если в воде превышено содержание хлоридов или сульфатов, то в заполняющий трубопровод отопительной системы нужно установить ионообменный фильтр. Не допускаются никакие добавки в воду отопительной системы (кроме добавок для повышения рН). Содержите воду в отопительной системе чистой.</p>

#### Антифризы/средства защиты от коррозии

Должна быть обеспечена защита от замерзания до -15 °C (→ таб. 9)

#### Предохранительный клапан

По EN 12828 требуется предохранительный клапан.

Предохранительный клапан должен устанавливаться вертикально.



#### осторожно:

▶ Предохранительный клапан ни в коем случае не закрывать.

#### 11.2 Отопительная система

#### Объёмный расход в отопительной системе

Если тепловой насос работает с баком-водонагревателем, то возможны сильные колебания расхода в отопительной системе. Но должен быть обеспечен определённый минимальный расход. Это происходит следующим образом:

В отопительных системах с радиаторами ограничьте минимальную температуру на термостатических головках радиаторов до 18°C.

В системах обогрева полов минимальный расход обеспечивается через контур без комнатного управления или перепускную линию распределителя отопления.

Таким образом обеспечивается охлаждение насоса отопительной системы, и гарантируется достоверность показаний датчика температуры подающей линии. Достаточен расход в несколько процентов от номинального расхода отопительной системы.

#### Расширительный бак

Выбирайте расширительный бак по EN 12828.

#### Клапан с фильтром

Установите грязевой фильтр для отопительной системы на подключении обратной линии отопления к тепловому насосу.

Установите грязевой фильтр для рассольного контура между устройством для заполнения и тепловым насосом вблизи от подключения рассольного контура.

Установите грязевой фильтр для горячего водоснабжения на подключении обратной линии ГВС.

#### Магнетитный фильтр

Если подключение осуществляется не к новой отопительной системе, то установите магнетитный фильтр в обратную линию теплового насоса.

#### Качество воды и рассол

Тепловой насос работает с более низкими температурами по сравнению с другими отопительными системами, поэтому термическая дегазация менее эффективна, и остаточное содержание кислорода всегда выше, чем в котловых установках. Поэтому отопительная система с агрессивной водой более склонна к коррозии. Не допускаются никакие добавки в воду отопительной системы. Содержите воду в отопительной системе чистой.

| Качество воды в отопительной системе |              |  |
|--------------------------------------|--------------|--|
| Жёсткость                            | < 3°dH       |  |
| Содержание кислорода                 | < 1 мг/л     |  |
| Двуокись углерода, Со2               | < 1 мг/л     |  |
| Хлорид-ионы, Cl-                     | < 100 мг/л   |  |
| Сульфат, So42-                       | < 100 мг/л   |  |
| Проводимость                         | < 350 мкС/см |  |

Таб. 8

#### Заполнение коллекторной системы

Заполните коллекторную систему рассолом, который гарантирует защиту от замерзания до -15 °C (см.  $\rightarrow$  таб. 9).

#### Рассол

Допустимые средства от замерзания для добавления в воду такого же качества, как вода отопительной системы.

| Средство от замерзания | объёмн. % | Свойства             |
|------------------------|-----------|----------------------|
| Этиловый спирт         | 29        | Хорошие              |
|                        |           | технические          |
|                        |           | свойства и           |
|                        |           | безвредный для       |
|                        |           | окружающей среды,    |
|                        |           | но возгораемость     |
|                        |           | при > 35°C.          |
| Этиленгликоль          | 30        | Хорошие              |
|                        |           | технические          |
|                        |           | свойства, но ядовит; |
|                        |           | не допускается       |
|                        |           | контакт с почвой.    |
| Пропиленгликоль        | 30        | Плохие технические   |
|                        |           | свойства, но не      |
|                        |           | ядовит; в некоторых  |
|                        |           | областях не          |
|                        |           | допускается контакт  |
|                        |           | с почвой.            |
| Соляные растворы       |           | Вызывают             |
|                        |           | коррозию, не         |
|                        |           | допускаются к        |
|                        |           | применению в         |
|                        |           | тепловых насосах.    |
|                        |           | Очень плохой опыт    |
|                        |           | эксплуатации.        |

Таб. 9 Рассол

#### Этиленгликоль

Обычно в отопительной системе этиленгликоль не применяется. В отдельных случаях его можно добавлять для дополнительной защиты в количестве не более 15 %. Мощность теплового насоса при этом снижается.



#### осторожно:

 В отопительной системе нельзя использовать другие антифризы.

#### Предохранительный клапан

По EN 12828 требуется предохранительный клапан.

Предохранительный клапан должен устанавливаться вертикально.



#### осторожно:

 Предохранительный клапан ни в коем случае не закрывать.

#### 11.3 Выбор места монтажа

При выборе места установки оборудования учтите, что тепловой насос создаёт определённый шум (→ глава 8.2).

#### 11.4 Монтаж трубопроводов

- Потребитель выполняет прокладку труб рассольного контура, отопительного контура и, если требуется, ГВС до помещения, в котором устанавливается оборудование.
- ► В отопительном контуре потребитель должен установить расширительный бак, группу безопасности и манометр (дополнительное оборудование).



**ВНИМАНИЕ:** возможно повреждение теплового насоса из-за грязи в трубопроводной сети.

- Промыть трубопроводную сеть.
- Смонтируйте узел заполнения в подходящем месте рассольного контура.

#### 11.5 Промывка труб отопления

Тепловой насос является частью отопительной системы. В тепловом насосе могут появиться неисправности из-за плохого качества воды в отопительной системе или из-за постоянного доступа в неё кислорода.

Из-за кислорода образуются продукты коррозии в виде магнетита и отложения.

Магнетит обладает истирающими свойствами, которые из-за турбулентного потока в насосах и клапанах являются причиной износа конденсатора и других узлов.

В отопительных системах, которые должны регулярно заполняться водой, или в которых отбор пробы показал, что вода нечистая, нужно перед монтажом теплового насоса предпринять определённые меры, например, установить фильтр и воздухоотводчик.

Не используйте химические добавки при подготовке воды. Допускаются только добавки для повышения значения рН. Рекомендуемая величина рН составляет 7,5 – 9.

#### 11.6 Установка

- Снять упаковку, соблюдая при этом приведенные на упаковке указания
- Выньте прилагаемые детали и инструкции по монтажу и эксплуатации.
- Смонтируйте прилагаемые опорные ножки и выровняйте тепловой насос.

#### 11.7 Теплоизоляция

Все теплопроводящие трубопроводы должны быть заизолированы подходящей теплоизоляцией в соответствии с действующими инструкциями.

#### 11.8 Монтаж датчиков температуры

#### 11.8.1 Температура бака-накопителя ТС2

 Независимо от системы, ТС2 должен всегда стоять на бакенакопителе.

#### 11.8.2 Датчик температуры подающей линии ТО

 Независимо от системы, ТО должен всегда стоять на подающей линии



Пульт управления работает по датчику (TC2/T0), который показывает наибольшее значение, обычно ТО. При очень низком расходе в отопительной системе, например, когда тепловой насос нагревает бак-накопитель, это может быть TC2.

#### 11.8.3 Датчик наружной температуры TL1

 Установите датчик на наиболее холодной (северной) стороне здания. Защитите датчик от прямого освещения солнечными лучами, от сквозняка и др. Не устанавливайте датчик непосредственно под крышей.

# 11.8.4 Датчик комнатной температуры/ многофункциональный регулятор (дополнительное оборудование)

Место установки датчика температуры в помещении:

- По возможности на внутренней стене без сквозняка и посторонних тепловых воздействий.
- ▶ Беспрепятственная циркуляция воздуха в помещении под датчиком (оставьте свободной поверхность, заштрихованную на →рис. 10).

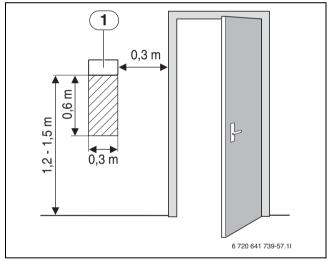



Рис. 10 Рекомендуемое место установки датчика температуры в помешении

[1] Расположение датчика температуры в помещении

# 11.9 Заполнение системы отопления/горячего водоснабжения

Закройте сливные краны и откройте все запорные краны и вентили на фильтрах. Установите все 3-ходовые клапаны в положение отопления. Откройте краны для заполнения, заполняйте систему и удаляйте воздух, пока не будет достигнуто требуемое давление. Максимально допустимое давление для теплового насоса составляет 6 бар.



Для бака-накопителя и бака-водонагревателя может быть установлено максимальное давление 3 бар (выполняйте требования к применяемой группе безопасности.).

Удалите воздух из отопительной системы и слейте немного воды из бака-накопителя, чтобы вымыть возможно скопившуюся грязь из бака. Проверьте грязевой фильтр и очистите его при необходимости. Проверьте герметичность всех соединений.

О других инструкциях см. данные соответствующей системы.

#### 12 Электрические соединения



ОПАСНО: опасность удара электрическим током!

 Обесточьте установку перед проведением работ с электрическим оборудованием.

Все регулирующие, управляющие и защитные устройства теплового насоса прошли проверку, подключены и готовы к эксплуатации.



Обеспечьте надёжное электрическое отключение теплового насоса.

- ▶ Установите отдельный предохранительный выключатель, который может полностью отключить тепловой насос. При раздельном электропитании на каждой линии подачи электроэнергии должен быть установлен свой отдельный предохранительный выключатель.
- Учитывая действующие правила для подключений 400 В/50 Гц, следует использовать минимум 5-жильный электрокабель типа H05VV-... (NYM-...). Сечение и тип кабеля выбирайте в соответствии со входным предохранителем (→глава 8.2) и способом прокладки.
- Соблюдайте меры безопасности по инструкциям VDE 0100 и специальным инструкциям местных энергоснабжающих организаций.
- ▶ Подключите кабель с резиновой изоляцией 5G16 (L1 (коричневый), L2 (чёрный) и L3 (серый) к выключателю с зазором между контактами не менее 3 мм (например, защитные автоматы, силовые выключатели). Не допускается подключение других потребителей.
- При подключении автомата защиты от тока утечки учитывайте электросхему. Подключайте только такие компоненты, которые имеют допуск к применению.



Функция SmartGrid и EVU поддерживаются не во всех странах - Уточните, что применимо для рынка вашей / страны.



Тепловой насос поставляется с заранее установленным кабелем. Если соединительный кабель поврежден или нуждается в замене, для выполнения работ необходимо привлекать аттестованного для этих целей специалиста/по монтажу.

#### 12.1 Электросхемы

#### 12.1.1 Распределительная коробка теплового насоса (54-80 кВт) - обзор

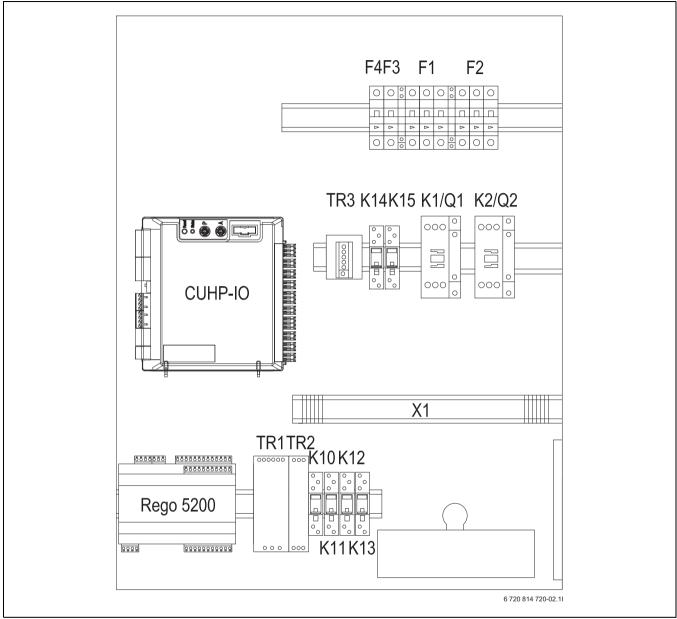



Рис. 11 Распределительная коробка теплового насоса (54–80 кВт) – обзор

| [F1]      | Защитный автомат компрессора 1               |
|-----------|----------------------------------------------|
| [F2]      | Защитный автомат компрессора 2               |
| [F3]      | Защитный автомат теплового насоса            |
| [F4]      | Защитный автомат дополнительного нагревателя |
| [TR1]     | Трансформатор 24 B =                         |
| [TR2]     | Трансформатор 12 B =                         |
| [TR3]     | Трансформатор 5 В =                          |
| [CUHP-IO] | Карта I/O                                    |
| [K1, K2]  | Контактор компрессора                        |
|           |                                              |

[К10] Реле прессостата высокого давления

[К11-К12] Реле отдельного дополнительного нагревателя,

уровень 1-2

[К13] Реле рассольного насоса [К14-15] Реле ограничителя пускового тока

[Rego 5200] Коробка регулятора пульта управления
[Q1, Q2] Ограничитель пускового тока (дополнительное

оборудование)

[Х1] Клеммы

#### 12.1.2 Монтаж дисплея управления Rego

Подключите прилагаемый провод к дисплею (4-полюсный штекер) и клемме Ext. Disp. в клеммной коробке Rego. (штекер 4P4C RJ10)  $\rightarrow$  (рис. 12).



**Важно!** Вложите четыре провода в штекер дисплея Rego в правильной последовательности, 1 чёрный, 2 белый, 3 жёлтый и 4 коричневый (см. рис. 19).

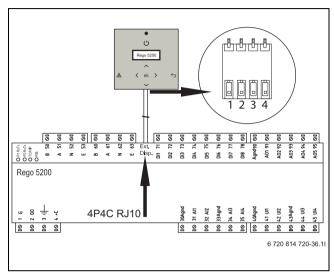



Рис. 12 Дисплей Rego, подключенный к контактам Ext. Disp. клеммной коробки Rego

- [1] Чёрный провод
- [2] Белый провод
- [3] Жёлтый провод
- [4] Коричневый провод

#### 12.1.3 Электропитание теплового насоса (54-80 кВт)

#### Стандартное исполнение, простое электропитание

Подключения выполнены на заводе для общего электропитания. Подключение к N, L1, L2, L3, а также защитный провод / земля.

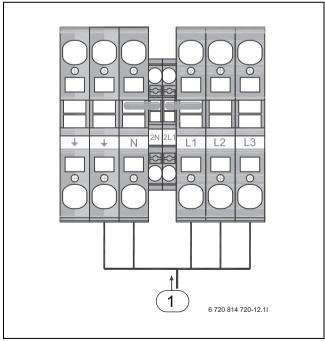



Рис. 13 Стандартное исполнение

[1] Электропитание теплового насоса

#### Вариант А

Электропитание теплового насоса может также осуществляться через регулятор EVU по низкому тарифу. Во время блокировки электропитание блока Rego, 1-фазный (L1) осуществляется по обычному тарифу. Подключение к 2L1, 2N, а также защитный провод. Сигнал Rego через регулятор EVU подсоединяется к клеммам 302 и 319. Функция SmartGrid (SG) подключается к клеммам 303 и 320. Во время блокировки контакт замкнут. Удалите перемычки между N-2N и 2L1-L1.

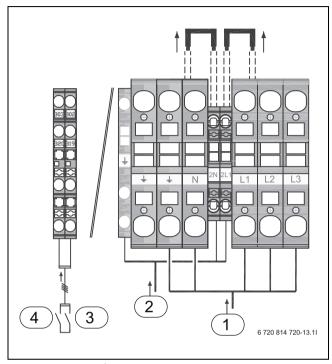



Рис. 14 Вариант подключения А

- [1] Электропитание теплового насоса
- [2] Электропитание пульта управления
- [3] Сигнал EVU
- [4] Сигнал SmartGrid (SG)

#### 12.2 Другие электросхемы

#### 12.2.1 Пояснения

#### Подключения Regin (I/O)

| Температурные входы РТ 1000: |     |                                        |  |
|------------------------------|-----|----------------------------------------|--|
| Al1                          | T0  | Температура подающей линии             |  |
| Al2                          | TL1 | Наружная температура                   |  |
| Al3                          | TW1 | Температура в баке-водонагревателе     |  |
|                              |     | (IWS)                                  |  |
| Al4                          | TC2 | Температура бака-накопителя            |  |
| UI1                          | TC1 | Подающая линия за электрокотлом/       |  |
|                              |     | температура котла                      |  |
| UI2                          | TCO | Температура обратной линии к тепловому |  |
|                              |     | насосу                                 |  |
| UI3                          | TR8 | Температура трубопровода хладагента    |  |
|                              |     | после экономайзера                     |  |
| UI4                          | JR1 | 0-5 В давление конденсации             |  |

Таб. 10

| Беспотенциа | Беспотенциальные цифровые входы 24 В =: |                  |                                        |  |
|-------------|-----------------------------------------|------------------|----------------------------------------|--|
| DI1         | PC1.SSM                                 | NC <sup>1)</sup> | Сводный аварийный сигнал               |  |
|             |                                         |                  | циркуляционного насоса отопительного   |  |
|             |                                         |                  | контура                                |  |
| DI2         | l1                                      | NO <sup>2)</sup> | EVU 1/внешнее регулирование 1          |  |
| DI3         | FM0                                     | NC <sup>1)</sup> | Аварийный сигнал электрического котла  |  |
|             |                                         |                  | (нагревателя)                          |  |
| DI4         | 13                                      | NO <sup>2)</sup> | EVU 2/внешнее регулирование 2          |  |
| Di5         | AC0                                     | NC <sup>1)</sup> | Сводный аварийный сигнал насоса        |  |
|             |                                         |                  | отопительной системы                   |  |
| DI6         | AB3                                     | NC <sup>1)</sup> | Сводный аварийный сигнал рассольного   |  |
|             |                                         |                  | насоса                                 |  |
| DI7         | FE1/AR1                                 | NC <sup>1)</sup> | Предохранитель управления/аварийный    |  |
|             |                                         |                  | сигнал на ограничителе пускового тока, |  |
|             |                                         |                  | компрессор 1                           |  |
| DI8         | FE2/AR2                                 | NC <sup>1)</sup> | Предохранитель управления/аварийный    |  |
|             |                                         |                  | сигнал на ограничителе пускового тока, |  |
|             |                                         |                  | компрессор 2                           |  |

Таб. 11

- 1) Normally closed/нормально замкнут
- 2) Normally open/нормально разомкнут

| Аналоговые выходы 0-10 B =: |         |                                         |  |
|-----------------------------|---------|-----------------------------------------|--|
| AO1                         | WM0/EMO | Смеситель для нагревателя, отопительных |  |
|                             |         | приборов/регулирование мощности         |  |
|                             |         | электрического котла                    |  |
| A02                         | Резерв  |                                         |  |
| AO3                         | Резерв  |                                         |  |
| AO4                         | PC0     | Насос отопительного контура (насос      |  |
|                             |         | теплоносителя для теплового насоса)     |  |
| AO5                         | PB3     | Рассольный насос                        |  |

Таб. 12

| Цифровые выходы 230 B ~: |         |                                      |  |
|--------------------------|---------|--------------------------------------|--|
| DO1                      | PC0     | Электропитание насоса отопительного  |  |
|                          |         | контура (насоса теплоносителя для    |  |
|                          |         | теплового насоса)                    |  |
| DO2                      | EE1/EM0 | Старт дополнительного нагрева/       |  |
|                          |         | электрический котёл уровень 1/       |  |
| DO3                      | EE2     | Электрический котёл уровень 2/насос/ |  |
|                          |         | электрический нагреватель для        |  |
|                          |         | термической дезинфекции в баке-      |  |
|                          |         | водонагревателе (IWS)                |  |
| DO4                      | VW1     | 3-ходовой клапан отопления/ГВС       |  |

Таб. 13

| Беспотенциальные цифровые выходы (инвертированы) |                                        |                                      |  |  |
|--------------------------------------------------|----------------------------------------|--------------------------------------|--|--|
| D05                                              | РС1 Циркуляционный насос отопительного |                                      |  |  |
|                                                  |                                        | контура                              |  |  |
| D06                                              | PM1/PW2                                | Циркуляционный насос котла/насос WWZ |  |  |
| D07                                              | SSM                                    | Сводный аварийный сигнал (А/АВ)      |  |  |

Таб. 14

#### Подключения карты HP (I/O)

| Температурные входы NTC: |     |                   |                                  |  |  |
|--------------------------|-----|-------------------|----------------------------------|--|--|
| I10                      | TR5 | R0 <sup>1)</sup>  | Температура всасываемого газа    |  |  |
| l11                      | TR2 | R0 <sup>1)</sup>  | Температура всасываемого газа    |  |  |
|                          |     |                   | впрыск хладагента                |  |  |
| l12                      | TR3 | R40 <sup>2)</sup> | Температура трубопровода         |  |  |
|                          |     |                   | хладагента перед экономайзером   |  |  |
| I13                      | TB0 | RO <sup>1)</sup>  | Температура на входе рассольного |  |  |
|                          |     |                   | контура                          |  |  |
| 114                      | TR7 | 3)                | Температура горячего газа,       |  |  |
|                          |     |                   | компрессор 2                     |  |  |
| I15                      | TC3 | R40 <sup>2)</sup> | Выходящий теплоноситель          |  |  |
| I16                      | TR6 | 3)                | Температура горячего газа,       |  |  |
|                          |     |                   | компрессор 1                     |  |  |
| 117                      | TB1 | RO <sup>1)</sup>  | Температура на выходе            |  |  |
|                          |     |                   | рассольного контура              |  |  |
| l19                      | JR0 |                   | 0-5 В давление испарения         |  |  |
| I18                      | JR2 |                   | 0-5 В давление впрыска           |  |  |
|                          |     |                   | хладагента                       |  |  |

Таб. 15

- 1) Датчик оптимизирован для температур около  $0^{\circ}$
- 2) Датчик оптимизирован для температур около  $40^{\circ}$
- 3) Компрессор со встроенным датчиком температуры горячего газа

| Аналоговые выходы (230 B): |     |                                |  |
|----------------------------|-----|--------------------------------|--|
| 150                        | ME1 | Индикация работы компрессора 1 |  |
| I51                        | ME2 | Индикация работы компрессора 2 |  |
| I52                        | MR1 | Реле высокого давления         |  |

Таб. 16

| Аналоговые вы | ходы PWM: |                                      |
|---------------|-----------|--------------------------------------|
| PWM11 PC0     |           | Частота вращения насоса отопительной |
|               |           | системы (резерв)                     |

Таб. 17

| Цифровые выходы 230 B ~: |     |                                              |  |
|--------------------------|-----|----------------------------------------------|--|
| 050                      | ER1 | Старт компрессора 1                          |  |
| 051                      | PB3 | Старт рассольного насоса                     |  |
| 052                      | ER2 | Старт компрессора 2                          |  |
| 053                      | ER3 | Впрыск хладагента, электромагнитный клапан 1 |  |
| 054                      | ER4 | Впрыск хладагента, электромагнитный клапан 2 |  |

Таб. 18

# 12.2.2 Внешние подключения теплового насоса (54-80 кВт)

| Регулятор шагового двигателя 12 В, однополюсный |                                    |                       |  |  |
|-------------------------------------------------|------------------------------------|-----------------------|--|--|
| 017-20                                          | 7-20 VR2 Клапан впрыска хладагента |                       |  |  |
| 013-16                                          | VR1                                | Расширительный клапан |  |  |

Ta6. 19

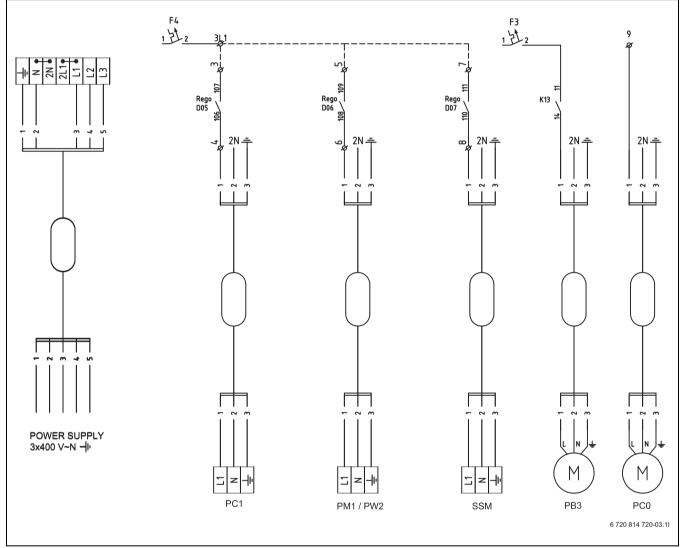



Рис. 15 Внешние подключения теплового насоса (54-80 кВт)

[РС1] Насос отопительного контура

[PM1/PW2] Циркуляционный насос котла/насос WWZ

[SSM] Сводный аварийный сигнал

[PB3] Рассольный насос (макс. допустимый рабочий ток 6 A) [PC0] Насос отопительной системы, насос теплоносителя для теплового насоса (макс. допустимый рабочий ток 2 A)



Нагрузка на беспотенциальное регулирование цифровыми выходами D05-D07 не должна превышать 2 А. Электропитание может осуществляться через предохранитель F4 через клемму 3L1. Если требуется более 2 А, то должно быть отдельное электропитание.

## 12.2.3 Внешние подключения теплового насоса (54-80 кВт)

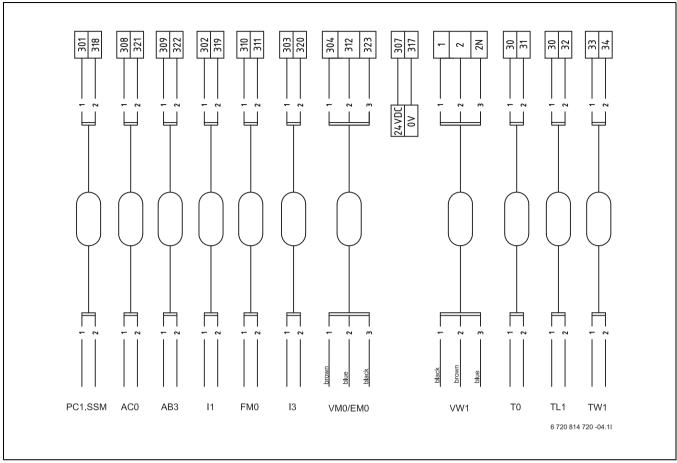



Рис. 16 Внешние подключения теплового насоса (54–80 кВт)

| [PC1.SSM] | Сводный аварийный сигнал циркуляционного насоса     |
|-----------|-----------------------------------------------------|
|           | отопительного контура                               |
| [ACO]     | Сводный аварийный сигнал насоса отопительной        |
|           | системы (насоса теплоносителя для теплового насоса) |
| [AB3]     | Сводный аварийный сигнал рассольного насоса         |
| [11]      | Внешний вход EVU1                                   |
| [FMO]     | Реле расхода/аварийный сигнал нагревателя           |
| [13]      | Внешний вход EVU 2                                  |
| [VMO/EMO] | Смеситель для нагревателя или отопительных          |
|           | приборов/регулирование мощности электрокотла со     |
|           | смесителем                                          |
| [VW1]     | 3-ходовой клапан                                    |
| [T0]      | Датчик температуры подающей линии                   |
| [TL1]     | Датчик наружной температуры                         |
| [TW1]     | Датчик температуры горячей воды                     |
|           |                                                     |

#### 12.2.4 Рабочая электросхема теплового насоса (54-80 кВт)

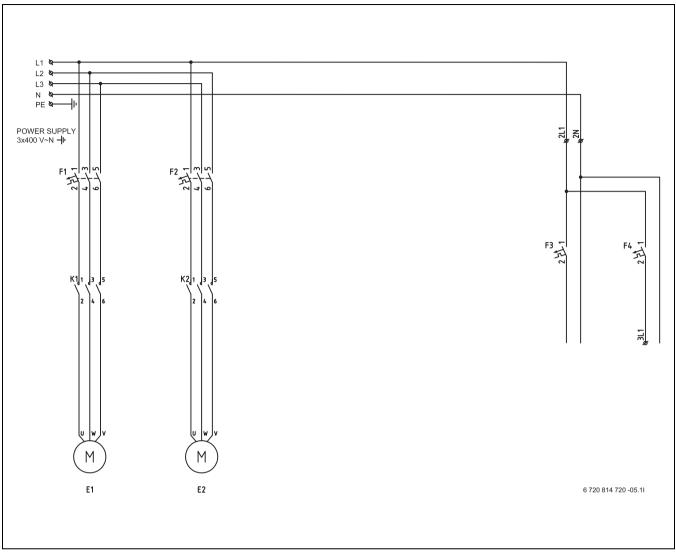



Рис. 17 Рабочая электросхема теплового насоса (54–80 кВт) с контактором (К1/К2)

- [Е1] Компрессор 1
- [Е2] Компрессор 2
- [F1] Защитный автомат компрессора 1
- [F2] Защитный автомат компрессора 2
- [F3] Защитный автомат теплового насоса
- [F4] Защитный автомат дополнительного нагревателя
- [К1] Контактор компрессора 1
- [К2] Контактор компрессора 2

#### 12.2.5 Рабочая электросхема теплового насоса (54-80 кВт)

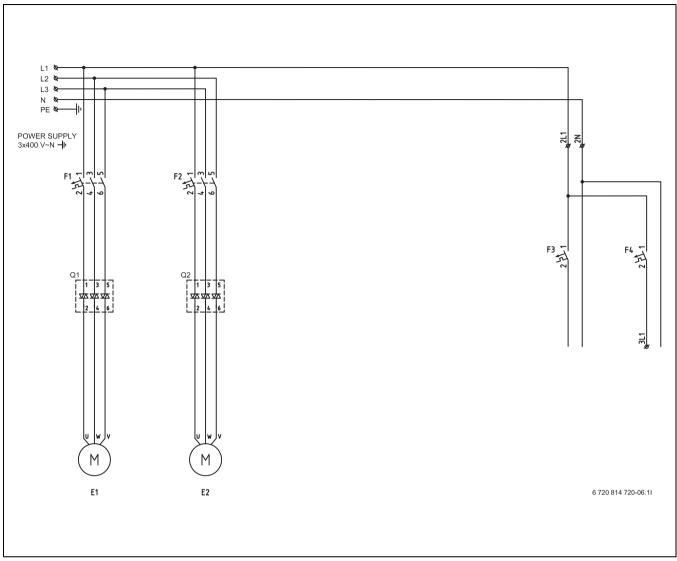



Рис. 18 Рабочая электросхема теплового насоса (54–80 кВт) с ограничителем пускового тока (Q1/Q2)

- [Е1] Компрессор 1
- [Е2] Компрессор 2
- [F1] Защитный автомат компрессора 1
- [F2] Защитный автомат компрессора 2
- [F3] Защитный автомат теплового насоса
- [F4] Защитный автомат дополнительного нагревателя
- [Q1, Q2] Ограничитель пускового тока (дополнительное оборудование)

#### 12.2.6 Электросхема теплового насоса (54-80 кВт)

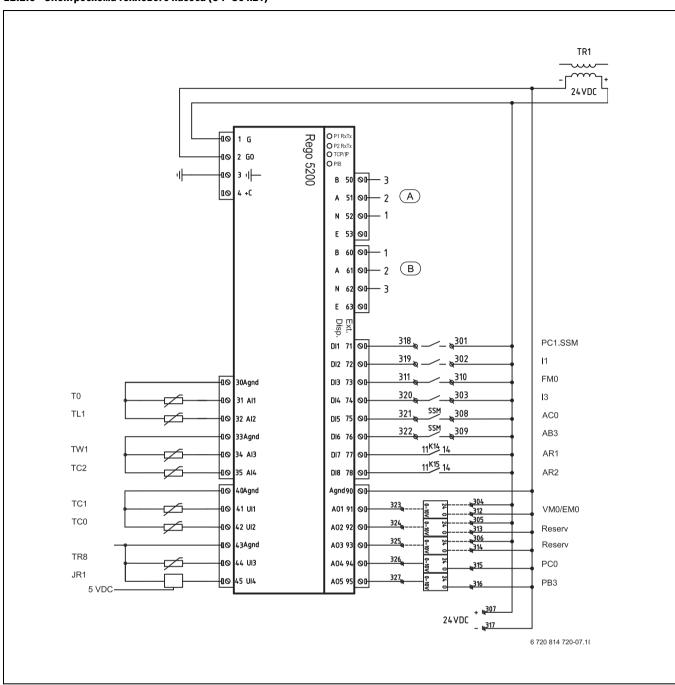



Рис. 19 Электросхема теплового насоса (54-80 кВт) со сводным аварийным сигналом для ограничителя пускового тока (AR1/AR2)

| [PC1.SSM] | Сводный аварийный сигнал циркуляционного насоса        | [T0]  | Датчик температуры подающей линии                 |
|-----------|--------------------------------------------------------|-------|---------------------------------------------------|
|           | отопительного контура                                  | [TL1] | Датчик наружной температуры                       |
| [11]      | EVU 1Внешний вход 1                                    | [TW1] | Бак-водонагреватель                               |
| [FMO]     | Аварийный сигнал дополнительного нагревателя           | [TC2] | Температура бака-накопителя/котла                 |
| [13]      | EVU 2/внешний вход 2, сводный аварийный сигнал         | [TC1] | Подающая линия за электрокотлом/температура котла |
| [AC0]     | Сводный аварийный сигнал насоса отопительной           | [TC0] | Температура обратной линии к тепловому насосу     |
|           | системы                                                | [TR8] | Температура трубопровода хладагента после         |
| [AB3]     | Сводный аварийный сигнал рассольного насоса            |       | экономайзера                                      |
| [VMO/EMO] | Смеситель для нагревателя или отопительных             | [JR1] | 0–5 В давление конденсации                        |
|           | приборов/регулирование мощности электрокотла со        | [A]   | Внутренняя связь                                  |
|           | смесителем                                             | [B]   | Внешняя связь (каскад, многофункциональный        |
| [AR1]     | Сводный аварийный сигнал ограничителя пускового        |       | регулятор)                                        |
|           | тока 1                                                 |       |                                                   |
| [AR2]     | Сводный аварийный сигнал ограничителя пускового тока 2 |       |                                                   |
| [PC0]     | Насос отопительного контура (насос теплоносителя       |       |                                                   |
|           | для теплового насоса)                                  |       |                                                   |
| [PB3]     | Рассольный насос                                       |       |                                                   |

#### 12.2.7 Электросхема теплового насоса (54-80 кВт)

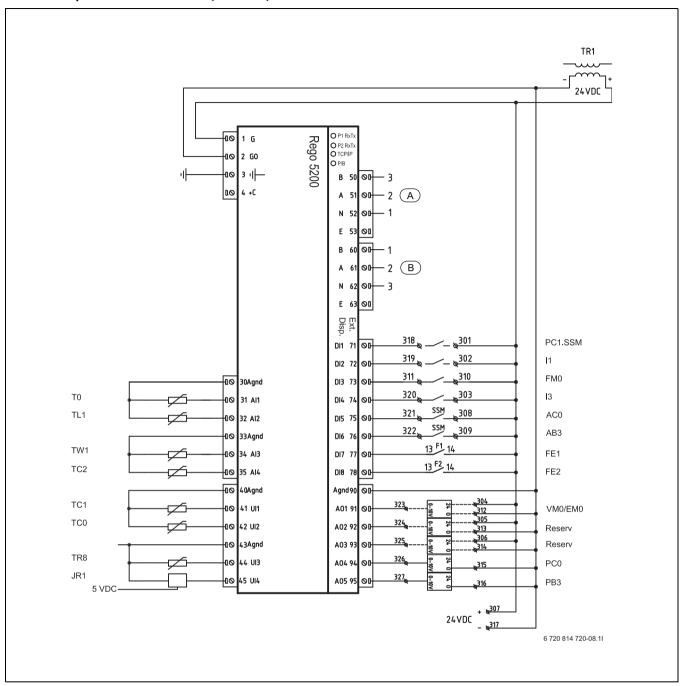



Рис. 20 Электросхема теплового насоса (54–80 кВт) с предохранителем управления (FE1/FE2)

[PB3]

[T0]

[TL1]

Рассольный насос

Датчик температуры подающей линии

Датчик наружной температуры

|                                                                 | , , , , , , , , , , , , , , , , , , , ,              |       | , , ,                                             |
|-----------------------------------------------------------------|------------------------------------------------------|-------|---------------------------------------------------|
| [PC1.SSM] Сводный аварийный сигнал циркуляционного насоса [TW1] |                                                      |       | Бак-водонагреватель                               |
|                                                                 | отопительного контура                                | [TC2] | Температура бака-накопителя/котла                 |
| [11]                                                            | EVU 1Внешний вход 1                                  | [TC1] | Подающая линия за электрокотлом/температура котла |
| [FM0]                                                           | Аварийный сигнал дополнительного нагревателя         | [TC0] | Температура обратной линии к тепловому насосу     |
| [13]                                                            | EVU 2/внешний вход 2, сводный аварийный сигнал       | [TR8] | Температура трубопровода хладагента после         |
| [AC0]                                                           | Сводный аварийный сигнал насоса отопительной         |       | экономайзера                                      |
|                                                                 | системы (насоса теплоносителя для теплового насоса)  | [JR1] | 0-5 В давление конденсации                        |
| [AB3]                                                           | Сводный аварийный сигнал рассольного насоса          | [A]   | Внутренняя связь                                  |
| [VMO/EM                                                         | 0]Смеситель для нагревателя или отопительных         | [B]   | Внешняя связь (каскад, многофункциональный        |
|                                                                 | приборов/регулирование мощности электрокотла со      |       | регулятор)                                        |
|                                                                 | смесителем                                           |       |                                                   |
| [FE1]                                                           | Предохранитель управления компрессора 1              |       |                                                   |
| [FE2]                                                           | Предохранитель управления компрессора 2              |       |                                                   |
| [PC0]                                                           | Насос отопительного контура (насос теплоносителя для |       |                                                   |
|                                                                 | теплового насоса)                                    |       |                                                   |

#### 12.2.8 Каскадное подключение (54-80 кВт)

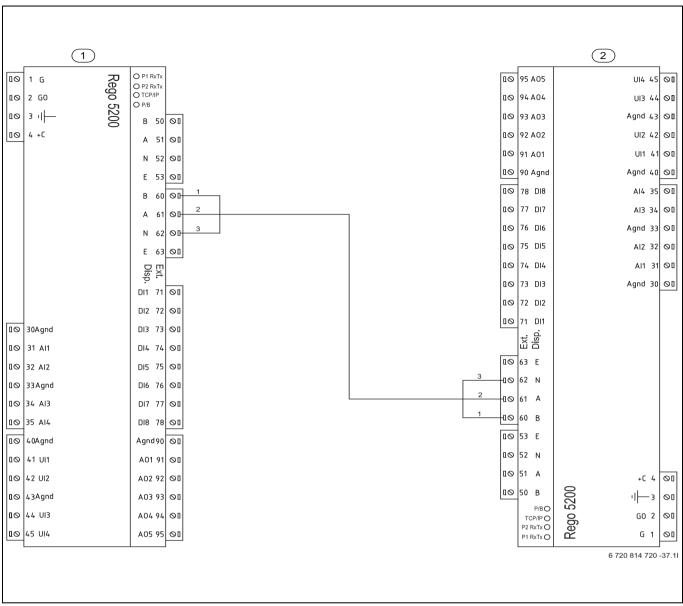



Рис. 21 Каскадное подключение (54-80 кВт)

- [1] Тепловой насос 1
- [2] Тепловой насос 2



Для каскадного подключения подходит витая пара (TP)  $2 \times 2 \times 0,5$  без экрана или 2-жильная витая пара с экраном, который в штекере Rego 5200 подсоединяется к N (см. электросхему).

#### 12.2.9 Электросхема теплового насоса (54-80 кВт)

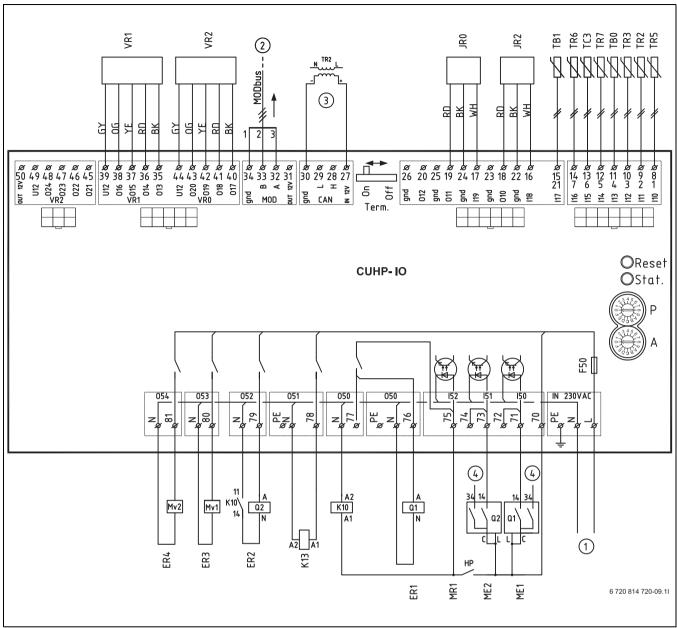



Рис. 22 Электросхема теплового насоса (54–80 кВт) с ограничителем пускового тока (Q1/Q2)

| [P=1] | Тепловой насос 80 кВт                           | [ER1]   | Старт компрессора 1                            |
|-------|-------------------------------------------------|---------|------------------------------------------------|
| [P=2] | Тепловой насос 72 кВт                           | [ER2]   | Старт компрессора 2                            |
| [P=3] | Тепловой насос 64 кВт                           | [ER3]   | Впрыск хладагента, электромагнитный клапан 1   |
| [P=4] | Тепловой насос 54 кВт                           | [ER4]   | Впрыск хладагента, электромагнитный клапан 2   |
| [A=0] | Стандартная регулировка                         | [F50]   | Предохранитель 6,3 А                           |
| [JR0] | Датчик давления испарения                       | [K13]   | Реле рассольного насоса                        |
| [Jr2] | Датчик давления впрыска хладагента              | [Q1/Q2] | Ограничитель пускового тока                    |
| [TB0] | Температура на входе рассольного контура        | [1]     | Рабочее напряжение 230 B~                      |
| [TB1] | Температура на выходе рассольного контура       | [2]     | Modbus для коробки регулятора Rego             |
| [TC3] | Выходящий теплоноситель                         | [3]     | 12 B = от сетевого блока TR2                   |
| [TR2] | Температура всасываемого газа впрыск хладагента | [4]     | Управляющее напряжение реле аварийного сигнала |
| [TR3] | Температура трубопровода хладагента перед       |         |                                                |
|       | экономайзером                                   |         |                                                |
| [TR5] | Температура всасываемого газа                   |         |                                                |
| [TR6] | Температура горячего газа, компрессор 1         |         |                                                |
| [TR7] | Температура горячего газа, компрессор 2         |         |                                                |
| [VR1] | Расширительный клапан                           |         |                                                |
| [VR2] | Клапан впрыска хладагента                       |         |                                                |
| [ME1] | Индикация работы компрессора 1                  |         |                                                |
| [ME2] | Индикация работы компрессора 2                  |         |                                                |
| [MR1] | Реле высокого давления                          |         |                                                |

#### 12.2.10 Электросхема теплового насоса (54-80 кВт)

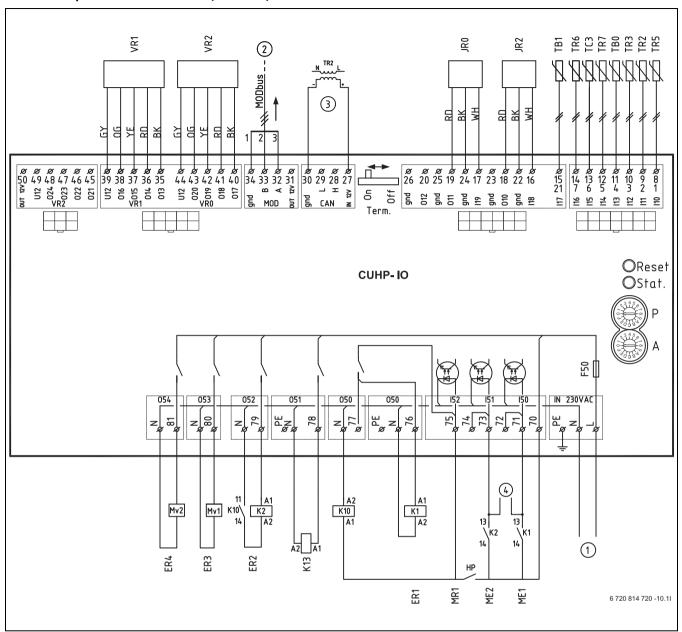



Рис. 23 Электросхема теплового насоса (54-80 кВт) с контактором (К1/К2)

| [P=1] | Тепловой насос 80 кВт                           | [ER1]   | Старт компрессора 1                            |
|-------|-------------------------------------------------|---------|------------------------------------------------|
| [P=2] | Тепловой насос 72 кВт                           | [ER2]   | Старт компрессора 2                            |
| [P=3] | Тепловой насос 64 кВт                           | [ER3]   | Впрыск хладагента, электромагнитный клапан 1   |
| [P=4] | Тепловой насос 54 кВт                           | [ER4]   | Впрыск хладагента, электромагнитный клапан 2   |
| [A=0] | Стандартная регулировка                         | [F50]   | Предохранитель 6,3 А                           |
| [JR0] | Датчик давления испарения                       | [K13]   | Реле рассольного насоса                        |
| [JR2] | Датчик давления впрыска хладагента              | [K1/K2] | Контактор                                      |
| [TB0] | Температура на входе рассольного контура        | [1]     | Рабочее напряжение 230 В~                      |
| [TB1] | Температура на выходе рассольного контура       | [2]     | Modbus для коробки регулятора Rego             |
| [TC3] | Выходящий теплоноситель                         | [3]     | 12 B = от сетевого блока TR2                   |
| [TR2] | Температура всасываемого газа впрыск хладагента | [4]     | Управляющее напряжение реле аварийного сигнала |
| [TR3] | Температура трубопровода хладагента перед       |         |                                                |
|       | экономайзером                                   |         |                                                |
| [TR5] | Температура всасываемого газа                   |         |                                                |
| [TR6] | Температура горячего газа, компрессор 1         |         |                                                |
| [TR7] | Температура горячего газа, компрессор 2         |         |                                                |
| [VR1] | Расширительный клапан                           |         |                                                |
| [VR2] | Клапан впрыска хладагента                       |         |                                                |
| [ME1] | Индикация работы компрессора 1                  |         |                                                |
| [ME2] | Индикация работы компрессора 2                  |         |                                                |
| [MR1] | Реле высокого давления                          |         |                                                |

#### 12.2.11 Электросхема теплового насоса (54-80 кВт)

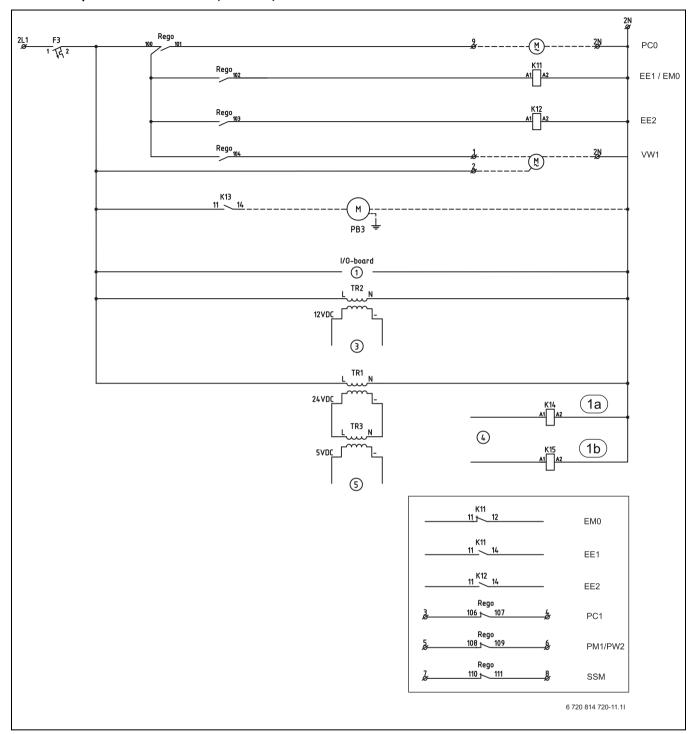



Рис. 24 Электрическая схема 54-80 кВт

[F3] Защитный автомат теплового насоса

[РСО] Насос отопительного контура

[РВ3] Рассольный насос

[EE1/EM0] Электрический котёл уровень 1/старт дополнительного

нагрева

[EE2] Электрический котёл уровень 2

[TR1] Трансформатор 24 B =

[TR2] Трансформатор 12 B =

[TR3] Трансформатор 5 B =

[К11, К12] Реле для отдельного дополнительного нагревателя,

уровень 1, 2

[К13] Реле рассольного насоса

[1] Рабочее напряжение 230 В~

[3] 12 B = от сетевого блока TR2

[4] Управляющее напряжение реле аварийного сигнала

[5] 5 B = or JR1, TR8

[К14, К15] Реле аварийного сигнала с ограничителем пускового

тока (иначе пустые разъёмы 1a/1b)

[VW1] 3-ходовой клапан отопления/ГВС

[Rego] Коробка регулятора Rego

#### 12.3 Схема соединений для EVU/SG

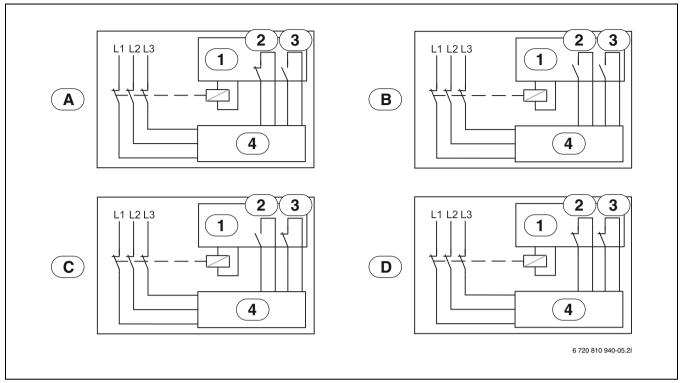



Рис. 25 Схема соединений для EVU/SG

- [1] Управление тарифом
- [2] EVU
- [3] SG (SmartGrid)
- [4] Пульт управления теплового насоса
- [A] Позиция 1, режим ожидания функция EVU = 1 функция SG = 0
- [B] Позиция 2, нормальный режим функция EVU = 0 функция SG = 0
- [B] Позиция 3, повышение температуры отопительного контура функция EVU = 0 функция SG = 1
- [D] Позиция 4, принудительный режим функция EVU = 1 функция SG = 1

#### 12.4 EVU 1, только отключение электрического нагревателя

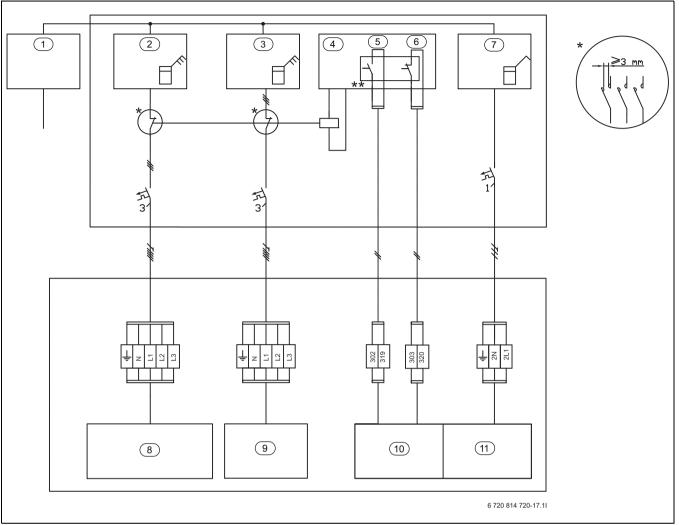



Рис. 26 EVU тип 1

- [1] Электропитание
- [2] Электрический счётчик теплового насоса, низкий тариф
- [3] Электрический счётчик для электрического нагревателя, низкий тариф
- [4] Контроль тарифа
- [5] Управление тарифом, EVU
- [6] Управление тарифом, SmartGrid (SG)
- [7] Электрический счётчик здания, 1-фазный, нормальный тариф
- [8] Тепловой насос (компрессор)
- [9] Электрический нагревательный стержень
- [10] Пульт управления Rego 5200
- [11] Пульт управления СИНР

\* Реле должно быть рассчитано на мощность теплового насоса и электрического нагревателя. Реле должен предоставить монтажник или представитель энергоснабжающей организации. Подключение управляющего сигнала к Rego 5200 к внешнему контакту (клемма 302/319). Состояние для активирования функции EVU или SmartGrid (замкнуто или разомкнуто) можно задать в системе управления. Во время блокировки на экране показана соответствующая пиктограмма.

\*\* Контакт реле, который подключается к клеммам 302/319 и 303/320 инсталляционного модуля должен быть рассчитан на 5 В и 1 мА.

#### 12.5 EVU 2, только отключение компрессора

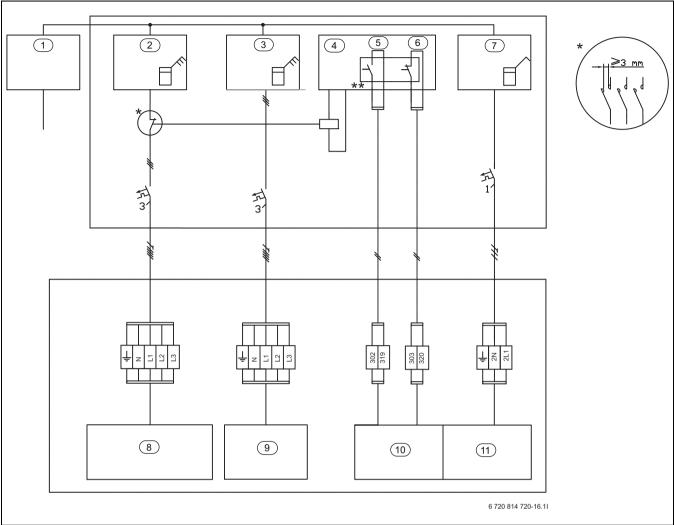



Рис. 27 EVU тип 2

- [1] Электропитание
- [2] Электрический счётчик теплового насоса, низкий тариф
- [3] Электрический счётчик для электрического нагревателя, нормальный тариф
- [4] Контроль тарифа
- [5] Управление тарифом, EVU
- [6] Управление тарифом, SmartGrid (SG)
- [7] Электрический счётчик здания, 1-фазный, нормальный тариф
- [8] Тепловой насос (компрессор)
- [9] Электрический нагревательный стержень
- [10] Пульт управления Rego 5200
- [11] Пульт управления СИНР
- \* Реле должно быть рассчитано на мощность теплового насоса и электрического нагревателя. Реле должен предоставить монтажник или представитель энергоснабжающей организации. Подключение управляющего сигнала к Rego 5200 к внешнему контакту (клемма 302/319). Состояние для активирования функции EVU или SmartGrid (замкнуто или разомкнуто) можно задать в системе управления. Во время блокировки на экране показана соответствующая пиктограмма.

\*\* Контакт реле, который подключается к клеммам 302/319 и 303/320 инсталляционного модуля должен быть рассчитан на 5 В и 1 мА.

#### 12.6 EVU 3, отключение компрессора и электрического нагревателя

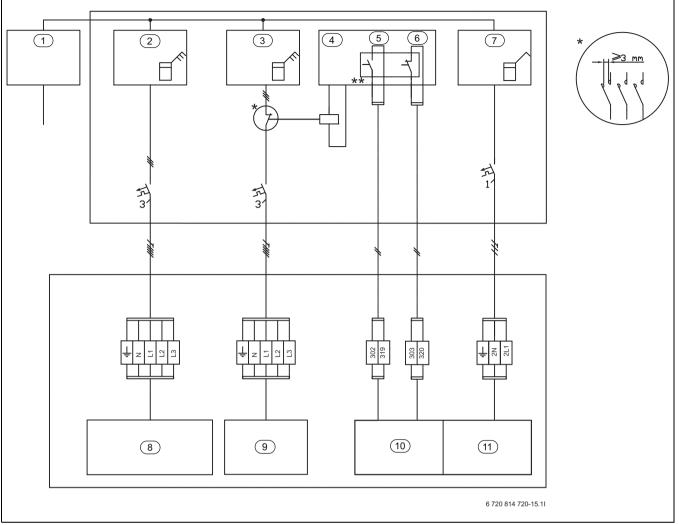



Рис. 28 EVU тип 3

- [1] Электропитание
- [2] Электрический счётчик теплового насоса, высокий тариф
- [3] Электрический счётчик для электрического нагревателя, низкий тариф
- [4] Контроль тарифа
- [5] Управление тарифом, EVU
- [6] Управление тарифом, SmartGrid (SG)
- [7] Электрический счётчик здания, 1-фазный, нормальный тариф
- [8] Тепловой насос (компрессор)
- [9] Электрический нагревательный стержень
- [10] Пульт управления Rego 5200
- [11] Пульт управления СИНР

\* Реле должно быть рассчитано на мощность теплового насоса и электрического нагревателя. Реле должен предоставить монтажник или представитель энергоснабжающей организации. Подключение управляющего сигнала к Rego 5200 к внешнему контакту (клемма 302/319). Состояние для активирования функции EVU или SmartGrid (замкнуто или разомкнуто) можно задать в системе управления. Во время блокировки на экране показана соответствующая пиктограмма.

\*\* Контакт реле, который подключается к клеммам 302/319 и 303/ 320 инсталляционного модуля должен быть рассчитан на 5 В и 1 мА.

#### 12.7 SmartGrid

Тепловой насос имеет функцию Smart Grid Ready. Отключение EVU является частью этой функциональности.

Отключение EVU позволяет энергоснабжающему предприятию выключать тепловой насос. Функция Smart Grid расширяет возможности доступа энергоснабжающего предприятия в том, что оно может в определённое время давать команду пуска, например, когда имеется наиболее благоприятный ток.

Дополнительно к выключению EVU требуется второе подключение из распределительной коробки здания к тепловому насосу, чтобы использовать функции SmartGrid.

Указание: свяжитесь с вашей энергоснабжающей организацией для возможного использования функции Smart Grid.

Функция Smart Grid активируется автоматически, когда внешний вход 1 сконфигурирован для отключения EVU.

Отопительная система должна иметь достаточно большой бакнакопитель и отопительные контуры только со смесителем.

Тепловой насос работает по сигналам, которые энергоснабжающее предприятие передаёт через соединительные провода Smart Grid.

- Он выключается в соответствии с конфигурацией выключения EVU 1/2/3.
- Он работает в нормальном режиме по запросам тепла от отопительной системы.
- Или получает команду пуска для загрузки бака-накопителя. Но загрузка может выполняться только в том случае, если температура в баке-накопителе ниже максимальной температуры. Иначе тепловой насос остаётся выключенным.

#### 13 Функциональный контроль

#### 13.1 Контур хладагента



Работы с контуром хладагента должно выполнять только специализированное предприятие, имеющее разрешение на выполнение таких работ.



ОПАСНО: ВЫХОД ЯДОВИТЫХ ГАЗОВ!

В контуре хладагента содержатся вещества, которые при высвобождении или при открытом огне могут образовывать ядовитые газы. Эти газы уже в низкой концентрации приводят к остановке дыхания.

▶ При негерметичном контуре хладагента сразу же покиньте помещение и проветрите его.

#### 13.2 Давление заполнения в рассольном контуре

▶ Проверьте давление заполнения в коллекторе (рассольный контур). Давление заполнения в рассольном контуре зависит от выбранного предварительного давления в расширительном баке. За минимальным давлением в рассольном контуре, обычно 1 бар, можно следить по манометру. Если давление опускается ниже минимального, то нужно добавить рассол.

Если давление после заполнения ниже 1 бар:

▶ Долейте рассол (→ глава 11.1).

#### 13.3 Рабочее давление в отопительной системе



**УВЕДОМЛЕНИЕ:** Возможно повреждение котла при заполнении холодной водой!

При доливе воды в систему отопления из-за внутренних напряжений возможно образование трещин на горячем теплообменнике котла.

▶ Доливайте воду только в холодный котёл.

| Показания манометра |                                                                                                                                                              |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1 бар               | Минимальное давление наполнения (при холодной системе)                                                                                                       |  |  |  |
| 6 бар               | Максимальное давление заполнения не должно превышаться при максимальной температуре воды отопительного контура (иначе открывается предохранительный клапан). |  |  |  |

Таб. 20 Рабочее давление

 Заполните систему до требуемого давления (зависит от высоты здания).



Перед заполнением налейте в шланг воду. Это препятствует попаданию воздуха в воду системы отопления.

► Если давление не поддерживается: проверить расширительный бак и систему отопления на герметичность.

Дальнейшую информацию о рабочем давлении → см. главу 11.9.

#### 14 Техническое обслуживание



ОПАСНО: опасность удара электрическим током!

 Обесточьте установку перед проведением работ с электрическим оборудованием.



Сервисные работы и техническое обслуживание контура хладагента разрешается выполнять только сертифицированному персоналу.

Регулярно проводите контрольные осмотр и проверку работоспособности теплового насоса, которые должно выполнять специализированное предприятие, имеющее разрешение на выполнение таких работ.

- Используйте только оригинальные запчасти!
- Запрашивайте запчасти по каталогу.
- ▶ Демонтированные уплотнения и кольца круглого сечения заменить новыми деталями.

При контрольных проверках нужно выполнить следующее:

#### Просмотреть активные аварийные сигналы

► Проверяйте протокол аварийных сигналов (информацию об этом см. в инструкции по монтажу и эксплуатации пульта управления).

#### Функциональный контроль

 При каждом техническом обслуживании проверяйте работу оборудования (→ стр. 36).

#### Электрические соединения

Проверьте наличие механических повреждений проводов.
 Замените повреждённые провода.

#### Проверка фильтров отопительного и рассольного контуров

Фильтры предотвращают попадание грязи в тепловой насос. Засорённые фильтры могут вызвать неисправности.



Для чистки фильтра нужно слить воду из системы. Фильтр и запорный кран встроены.

#### Чистка сетчатого фильтра

- ▶ Закройте кран (1).
- ▶ Отверните рукой крышку (2).
- Выньте сетчатый фильтр и промойте его проточной водой или очистите сжатым воздухом.
- Установите сетчатый фильтр. При установке следите за тем, чтобы выступы на фильтре вошли в пазы на кране (3).

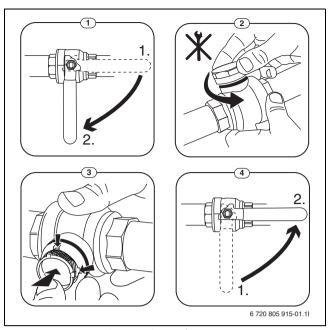



Рис. 29 Исполнение фильтра без предохранительного кольца

- ▶ Заверните рукой крышку.
- ▶ Закройте кран (4).

Очищайте фильтры один раз в год, а также при определённых неисправностях, например, Высокая разность температур теплообм. и Высокая разность температур контура коллектора.

#### Чистка и промывка фланцевого фильтра (рассольный контур)



Если в качестве средства от замерзания используется спирт, и в этом же помещении находится дизельный, газовый или пеллетный котёл, то сначала выключите котёл, чтобы не допустить возгорание паров спирта.

- ▶ Выключите тепловой насос кнопкой включения/выключения.
- ► Закройте большие краны VB32 и VB35.
- Откройте FB31 и выпустите воздух из CB31 или дождитесь, когда сбросится давление в системе.
- ▶ Поставьте ёмкость под сетчатый фильтр.
- ► Держите ведро под сетчатым фильтром рассола SB31, чтобы собрать вытекающие сначала загрязнения. Дайте стечь оставшейся жидкости в резервуар.
- ▶ Откройте подходящим инструментом сливной винт на SB31 и дайте стечь жидкости. Осторожно отворачивайте винты, крепящие плоскую крышку. Подготовьте подходящую ёмкость для сбора вытекающей жидкости (→рис. 31 № 1).
- ▶ Отверните подходящим инструментом винты на фланцевой крышке. Отворачивайте винты обязательно крест на крест, чтобы не перекосить крышку. Затем снимите крышку. Подставьте подходящую ёмкость, чтобы собрать остатки жидкости. (→рис. 31 № 2).
- После того, как снята крышка, и стекли остатки жидкости, можно вынуть фильтр вниз (→ рис. 31 № 3).
- Удалите грязь и отложения водой, специальным жидким очистителем или щёткой. После чистки проверьте наличие повреждений фильтра. Замените фильтр при наличии отверстий или других повреждений (→ рис. 31 № 4).

- ► Осторожно вставьте фильтр снизу. Отсоедините уплотнение от крышки и проверьте перед установкой. Если резервуар остаётся пустым, то осторожно откройте SB35 и выпустите воздух из CB31 с FB31 (→ рис. 31 № 5).
- Проверьте уплотнение. При наличии повреждений замените уплотнение. Только полностью невредимые уплотнения могут гарантировать исправную работу фильтра. (→ рис. 31 № 6).
- Затяните крест на крест винты крепления фланцевой крышки с моментом 50 Нм (→ рис. 31 № 7).
- ▶ Откройте VB35.
- ▶ Проверьте давление на GB31 и заполните рассольный контур.
- Для пуска теплового насоса нажмите кнопку включения/ выключения.
- ▶ При наличии паров спирта проветрите помещение.
- Запустите газовый, дизельный или пеллетный котёл в помещении (если имеется).




Рис. 30 Рассольный контур с кранами

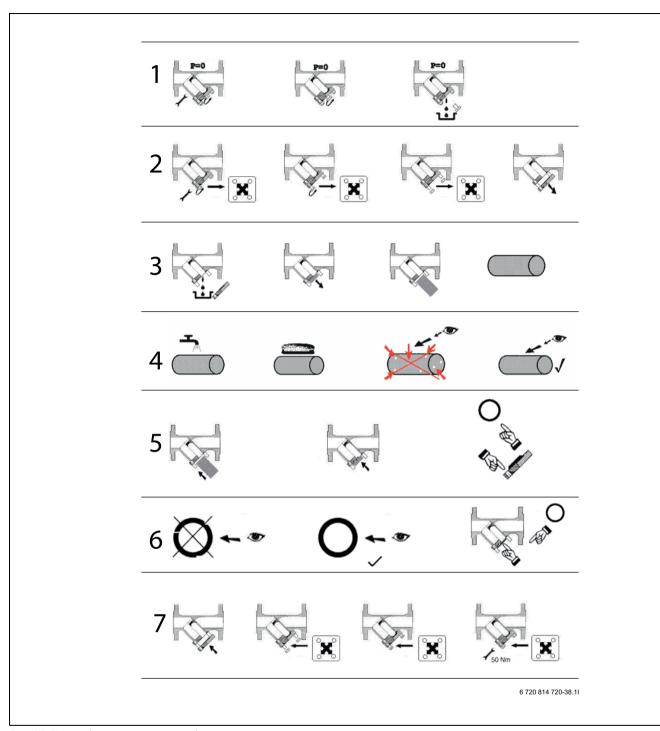



Рис. 31 Чистка фланцевого сетчатого фильтра

#### Уход и контроль системы



Монтажники должны соблюдать действующие нормы и правила, а также требования инструкции по монтажу и эксплуатации.

# Общие правила в соответствии с постановлением (EC) № 517 / 2014:

Для лиц, работающих с хладагентом (например, заполнение системы, выпуск хладагента или поиск утечек), требуется подтверждение личной квалификации для выполнения этих действий, а также знание постановлений и других важных национальных требований по фреонам.

# Проверка рабочего давления в отопительном/рассольном контуре

Определите рабочее давление по манометру. Другие сведения о рабочем давлении  $\rightarrow$  см. в главе 11.9/13.3).

#### 15 Защита окружающей среды

Защита окружающей среды - это основной принцип деятельности предприятий группы Bosch.

Качество продукции, экономичность и охрана окружающей среды— эти равнозначные для нас цели. Мы строго соблюдаем законы и правила охраны окружающей среды. Для защиты окружающей среды мы с учетом экономических аспектов применяем наилучшую технику и материалы.

#### **Упаковка**

При изготовлении упаковки мы учитываем национальные правила утилизации упаковочных материалов, которые гарантируют оптимальные возможности для их переработки.

Все используемые упаковочные материалы разлагаются и подлежат вторичной переработке.

#### Оборудование, отработавшее свой срок

Оборудование, отслужившее свой срок, содержит материалы, которые нужно отправлять на повторное использование. Узлы легко снимаются, а пластмасса имеет маркировку. Поэтому отсортировывайте различные конструктивные узлы и отправляйте их на повторное использование или утилизацию.

# Для записей

# Для записей

# Для записей

Bosch Thermotechnik GmbH Junkersstrasse 20-24 D-73249 Wernau

www.bosch-thermotechnology.com