

Аналитические возможности жидкостного хроматографа Маэстро ВЭЖХ с детектором на диодной матрице на примере определения содержания фенольных и фурановых соединений в коньяках согласно ГОСТ 33407-2015

Яшин А. Я. к. х. н., ведущий инженер отдела исследований и разработок, ООО Интерлаб, Россия, Москва

Ключевые слова

Жидкостная хроматография, коньяк, коньячный спирт, фенольные и фурановые соединения, выявление фальсификата, детектор на диодной матрице

Резюме

Показаны аналитические возможности Маэстро ВЭЖХ на примере определения содержания фенольных и фурановых соединений в коньяках согласно ГОСТ 33407-2015 «Коньяки, дистилляты коньячные, бренди. Определение содержания фенольных и фурановых соединений методом высокоэффективной жидкостной хроматографии».

Коньяк относится к группе наиболее часто фальсифицируемых крепких напитков. Так по оценкам Союза производителей коньяка уровень фальсификата на рынке доходит до 30%. Коньяк имеет сложный физико-химический состав, причем в число основных его компонентов входит значительное количество фенольных и полифенольных соединений. высококачественного коньяка из коньячного спирта последний необходимо выдерживать в течение многих лет в дубовых бочках. В процессе такой выдержки коньячный спирт приобретает ароматические и вкусовые достоинства, присущие высококачественному коньяку. В коньяке идентифицировано более 700 химических соединений, каждое из которых вносит свой индивидуальный вклад в композицию ароматических и вкусовых свойств итогового напитка. В процессе созревания коньячных спиртов летучие и нелетучие вещества фенольной и фурановой природы экстрагируются из древесины дубовой бочки, а также образуются в результате ряда химических превращений. Качественный химический состав и количественное содержание компонентов в различных образцах коньячной продукции может отличаться, т.к. все зависит от времени контакта с древесиной дуба, способа ее предварительной обработки, кратности использования бочки, температуры и т.д. При контакте с древесиной дуба в коньячные спирты переходят дубильные вещества - преимущественно галловая и эллаговая кислоты, которые обычно накапливаются в значительных количествах пропорционально времени выдержки. Целлюлоза дубовой бочки под влиянием кислой среды подвергается частичному гидролизу с образованием продуктов дегидратации углеводов — альдегидов фуранового ряда: фурфурол, 5-метилфурфурол и 5-гидроксиметилфурфурол (5-НМF). В процессе созревания коньячных спиртов обычно увеличивается содержание этих фурановых соединений. На начальном этапе выдержки коньячного спирта происходит процесс этанолиза и гидролиза лигнина древесины дуба с образованием нелетучих веществ и ароматических альдегидов преимущественно коричной группы кониферилового и синапового. Затем происходит насыщение двойных связей синапового альдегида с образованием сиреневого альдегида, при дальнейшем окислении которого образуется сиреневая кислота, а из кониферилового альдегида – ванилин, который в завершении окисляется до ванилиновой кислоты. Таким образом, конечным продуктом этих реакций являются ароматические кислоты (ванилиновая, сиреневая), чем объясняется их накопление с увеличением времени выдержки.

В 2017 году был введен в действие ГОСТ 33407-2015 «Коньяки, дистилляты коньячные, бренди. Определение содержания фенольных и фурановых соединений методом высокоэффективной жидкостной хроматографии», предназначенный именно для выполнения измерений массовой концентрации указанных выше фенольных и фурановых соединений (выявление фальсификата) в различных образцах коньячной продукции.

Экспериментальная часть

Для анализа использовали чистые вещества фирмы Sigma Aldrich:

Галловая кислота (стандарт, не менее 98%);

5-гидроксиметилфурфурол (5-НМF) (стандарт, не менее 98%);

Ванилиновая кислота (стандарт, не менее 98%);

Сиреневая кислота (стандарт, не менее 98%);

п-кумаровая кислота (стандарт, не менее 98%);

Синаповая кислота (стандарт, не менее 98%);

Вода бидистиллированная;

Ортофосфорная кислота, ч.д.а.

Ацетонитрил для ВЭЖХ

Инструменты:

Жидкостный хроматограф «МаэстроВЭЖХ» с детектором на диодной матрице

Колонка Кромасил С18 5 мкм 250 х 4.6 мм

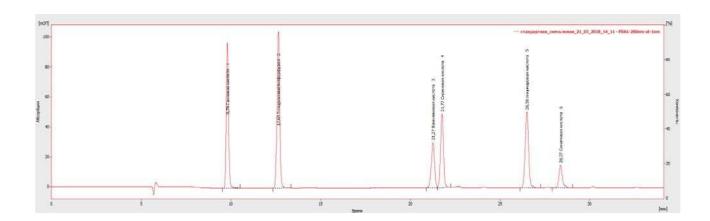
 Скорость потока
 0,6 мл/мин

 Длина волны
 280 нм

 Вводимый объем
 10 мкл

Подвижная фаза: А – ацетонитрил, В – бидистиллированная вода (рН=2,5, НЗРО4), градиент:

Время, мин	A, %	В, %
Исходный	5	95
10	15	85
45	40	60
60	5	95

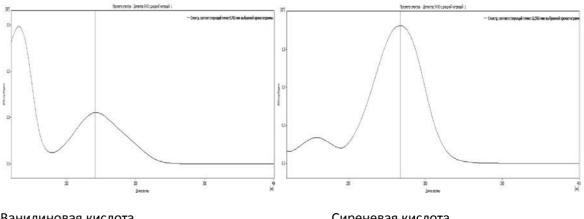

Результаты и обсуждения

Согласно ГОСТ 33407-2015 «Коньяки, дистилляты коньячные, бренди. Определение содержания фенольных и фурановых соединений методом высокоэффективной жидкостной хроматографии» перечень определяемых соединений следующий: галловая кислота, 5-гидроксиметилфурфурол, фурфурол, 4-гидроксибензальдегид, ванилиновая кислота, 5-метилфурфурол, сиреневая кислота, ванилин, сиреневый альдегид, п-кумаровая кислота, синаповая кислота, конифериловый альдегид, синаповый альдегид, эллаговая кислота.

В настоящей работе определялись следующие соединения: галловая кислота, 5-гидроксиметилфурфурол, ванилиновая кислота, сиреневая кислота, п-кумаровая кислота, синаповая кислота.

Возможность определения других фурановых и фенольных соединений в разных сортах коньяков была ограничена имеющимся в наличие набором индивидуальных соединений в качестве образцов сравнения.

Ниже приведена типичная хроматограмма стандартной смеси фурановых и фенольных соединений

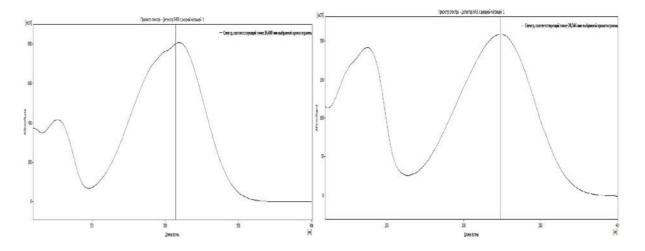


Время уд. [мин]		Площадь [mOП.сек]	Высота [тОП]	Название вещества	
1	9,793	838,702	97,196	Галловая кислота	
2	12,647	1080,698	104,449	5-гидроксиметилфурфурол	
3	21,267	377,098	30,166	Ванилиновая кислота	
4	21,767	555,985	49,276	Сиреневая кислота	
5	26,5	662,595	50,639	п-кумаровая кислота	
6	28,373	196,156	15,084	Синаповая кислота	

С использованием детектора на диодной матрице были сняты спектры индивидуальных веществ.

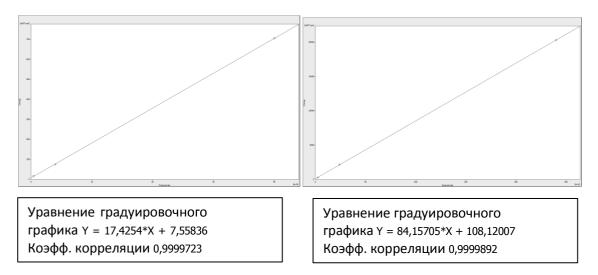

Галловая кислота

5-гидроксиметилфурфурол


Ванилиновая кислота

Сиреневая кислота

п-кумаровая кислота

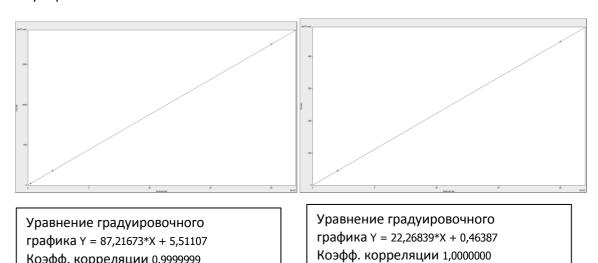

Синаповая кислота

Из этих спектров создана база данных с помощью ПО Clarity. В дальнейшем идентификация пиков в хроматограммах коньяков проводилась не только по времени удерживания, но и с учетом этой базы данных спектров.

галловая кислота

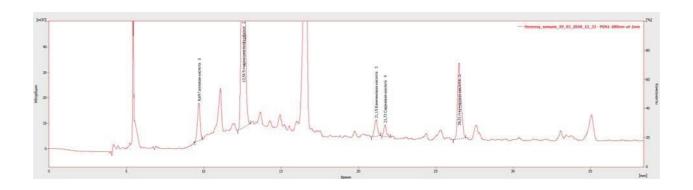
5-гидроксиметилфурфурол

ванилиновая кислота

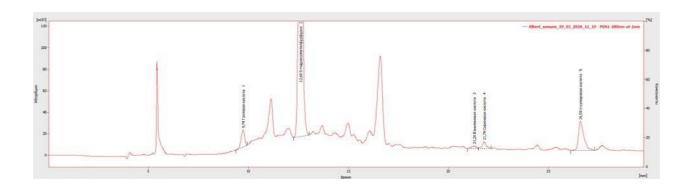

сиреневая кислота

п-кумаровая кислота

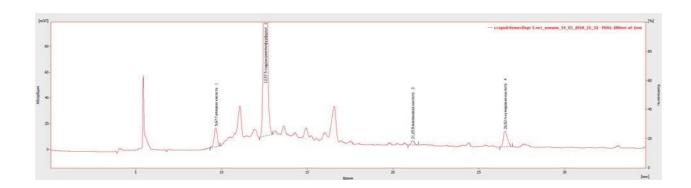
Коэфф. корреляции 0,9999999


синаповая кислота

Отобранную и подготовленную в соответствии с п.8.1 ГОСТ 33407-2015 пробу коньяка фильтровали через РТFE 0.45 мкм фильтр — насадку в виалу для автосамплера. Подготовленная для измерения проба должна быть прозрачной.


Ниже приведены хроматограммы образцов коньяков.

Коньяк Hennessy VS

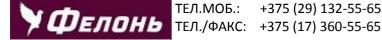


	Время уд. [мин]	Площадь [тОП.сек]	Высота [тОП]	Количество [мг/л]	Название вещества
1	9,687	179,381	14,841	9,86	Галловая кислота
2	12,56	3051,739	234,715	34,978	5-гидроксиметилфурфурол
(1)	21,147	92,071	6,438	3,05	Ванилиновая кислота
Z	21,727	57,266	4,623	1,125	Сиреневая кислота
5	26,507	474,895	29,832	5,382	п-кумаровая кислота

Коньяк Albert Jarraud XO

	Время уд. [мин]	Площадь [mOП.сек]	Высота [тОП]	Количество [мг/л]	Название вещества
1	9,74	190,319	15,637	10,488	Галловая кислота
2	12,6	4423,35	329,843	51,276	5-гидроксиметилфурфурол
3	21,28	40,764	2,292	1,289	Ванилиновая кислота
4	21,78	89,819	6,156	1,788	Сиреневая кислота
5	26,587	506,302	26,804	5,742	п-кумаровая кислота

	Время уд. [мин]	Площадь [тОП.сек]	Высота [тОП]	Количество [мг/л]	Название вещества
1	9,673	176,372	14,358	9,688	Галловая кислота
2	12,567	3804,55	301,613	43,923	5-гидроксиметилфурфурол
3	21,147	43,043	3,13	1,367	Ванилиновая кислота
4	21,733	2,127	0,325	0,003	Сиреневая кислота
5	26,52	199,429	12,052	2,223	п-кумаровая кислота


Ниже приведена итоговая таблица содержания анализируемых компонентов в коньяках. Окончательный результат измерений рассчитывался согласно формулам, приведенным в п. 10.3, показатель точности метода для расчета брался из таблицы 3 п.11 ГОСТ 33407-2015 «Коньяки, дистилляты коньячные, бренди. Определение содержания фенольных и фурановых соединений методом высокоэффективной жидкостной хроматографии».

	Название коньяка			
Название вещества	Старый Кенигсберг 5	Hennessy VS	Albert Jarraud XO	
	лет			
	Содержание, мг/л (P=0,95; n=2)			
Галловая кислота	10 <u>+</u> 1 10,1 <u>+</u> 0,9		10 <u>+</u> 1	
5-гидроксиметилфурфурол	45 <u>+</u> 3	35 <u>+</u> 2	51 <u>+</u> 3	
Ванилиновая кислота	1,5 <u>+</u> 0,2	3,3 <u>+</u> 0,5	1,4 <u>+</u> 0,2	
Сиреневая кислота	-	1,2 <u>+</u> 0,2	1,7 <u>+</u> 0,3	
п-кумаровая кислота	2,4 <u>+</u> 0,4	5,6 <u>+</u> 0,6	5,7 <u>+</u> 0,6	

Выводы

Жидкостный хроматограф Маэстро ВЭЖХ с диодноматричным детектором пригоден для определения фурановых и фенольных соединений согласно ГОСТ 33407-2015.

Прибор можно рекомендовать лабораториям Роспотребнадзора и другим организациям для контроля качества коньячной продукции.

ТЕЛ.МОБ.: +375 (29) 132-55-65 АДРЕС: 220068, г. Минск, ул. Гая, д.6

Л./ФАКС: +375 (17) 360-55-65 MAIL: <u>felonby@mail.ru</u> WEB: <u>www.felon.by</u>