(T arlight

ИСТОЧНИКИ ПИТАНИЯ CEPИЯ ARPV-SPxx480 CFPИЯ ARPV-SPxx600

ARPV-SP12480 ARPV-SP12480A ARPV-SP24480 ARPV-SP24480A ARPV-SP12600 ARPV-SP12600A ARPV-SP24600 ARPV-SP24600A

Универсальные CV/CC Герметичные Металлический корпус

Корректор коэффициента мощности

1. ОСНОВНЫЕ СВЕДЕНИЯ

- 1.1. Источники питания серии ARPV-SPxx480 и ARPV-SPxx600 предназначены для преобразования переменного напряжения электрической сети в постоянное стабилизированное напряжение (режим CV) или постоянный стабилизированный ток (режим CC) и используются для питания светодиодных лент, светодиодных модулей.
- 1.2. В моделях с индексом «А» возможна подстройка выходного напряжения и регулировка выходного тока (встроенные потенциометры Vadj и ladj).
- 1.3. Наличие входа управления позволяет включать и выключать выходное напряжение без бросков тока в сети, имеющих место при «холодном» старте источников питания.
- 1.4. Дежурное напряжение DC 5 B (standby) при необходимости обеспечивает питание внешнего устройства управления.
- 1.5. Герметичный корпус позволяет использовать источник для эксплуатации в помещении или на открытом воздухе под навесом, при соблюдении условий эксплуатации.
- 1.6. Встроенный активный корректор коэффициента мощности.
- 1.7. Металлический корпус обеспечивает эффективное естественное охлаждение.
- 1.8. Высокая стабильность выходного напряжения и тока, высокий КПД.
- 1.9. Защита от перегрузки, короткого замыкания, превышения напряжения на выходе и перегрева.
- 1.10. Тестирование 100% изделий при максимальной нагрузке.

2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1. Общие характеристики для серии

Частота питающей сети	47 63 Гц
Коэффициент мощности	≥ 0,95 (230 B)
Макс. ток холодного старта	75 A (230 B)
кпд	≥ 93-95%
Температура окружающей среды	-40+70 °C (см. график зависимости)

2.2. ХАРАКТЕРИСТИКИ ПО МОДЕЛЯМ

Модель	ARPV- SP12480	ARPV- SP12480A	ARPV- SP24480	ARPV- SP24480A	ARPV- SP12600	ARPV- SP12600A	ARPV- SP24600	ARPV- SP24600A
Выходное напряжение в режиме CV	DC 12 B ±3%		DC 24 B ±3%		DC 12 B ±3%		DC 24 B ±3%	
Выходной ток, макс	35 A		20 A		40 A		25 A	
Выходная мощность, макс	420 BT		480 BT		480 BT		600 BT	
Диапазон регулировки выходного напряжения	-	10,5 – 12,6 B	-	21,0-25,2B	-	10,2-12,6B	-	20,4-25,2B
Диапазон регулировки вых. тока	-	20-35 A	-	10-20 A	-	20-40 A	-	12,5-25 A
Мин. вых. напряжение в режиме СС	6	В	12 B		6 B		12 B	
Диапазон входных напряжений	AC 100-240 B (AC 90-305 B)*				AC 120-240 B (AC 108-305 B)*			
Потребляемый от сети ток **	2,8 A			3,0 A				
Степень пылевлагозащиты	IP67	IP65	IP67	IP65	IP67	IP65	IP67	IP65
Габаритные размеры	261×92,5×41 мм				290×124×45 мм			

^{*} Предельный диапазон входных напряжений.

3. УСТАНОВКА И ПОДКЛЮЧЕНИЕ


3. УСТАНОВКА И ПОДКЛЮЧЕНИЕ
Внимание! Во избежание поражения электрическим током перед началом всех работ отключите
электропитание. Все работы должны проводиться только квалифицированным специалистом.

- 3.1. Извлеките источник питания из упаковки и убедитесь в отсутствии механических повреждений.
- 3.2. Убедитесь, что выходное напряжение и мощность источника соответствуют подключаемой нагрузке.
- 3.3. Закрепите источник питания в месте установки.
- 3.4. Подключите выходные (OUTPUT) провода источника питания к нагрузке. Соблюдайте полярность: «+» красный провод, «—» черный. Для уменьшения падения напряжения на проводах источники питания имеют два выходных кабеля, соединенных внутри источника. Равномерно распределяйте нагрузку между выходными проводами.
- 3.5. При использовании управления подключите провода кабеля управления к внешнему устройству.

Маркировка на корпусе	Цвет провода	Назначение
GND	Синий	Общий провод - минус источника дежурного питания и сигнала управления.
+5VSB	Белый	Выход +5 В источника дежурного питания.
INHIBIT (EN)	Коричневый	Вход выключения основного выходного напряжения. Для выключения выходного напряжения необходимо соединить вход INHIBIT (EN) с проводом GND.

Внимание! Если внешнее управление не используется, заизолируйте провода кабеля управления, чтобы предотвратить короткое замыкание.

- Подключите входные (INPUT) провода источника питания к обесточенной электросети, соблюдая маркировку: «АС L» (фаза) –коричневый провод, «АС N» (ноль) – синий, ⊕ (заземление) - желто/зеленый.
- 3.7. Внимание! Проверьте правильность подключения всех проводов. Подача напряжения сети ~220 В на выходные провода или провода управления источника питания неминуемо приводит к выходу его из строя.
- Включите электропитание. Допустима небольшая задержка включения источника (до 2 сек.), что является особенностью работы электронной схемы управления и не является дефектом.
- 3.9. В моделях с индексом «А» возможна подстройка выходного напряжения и регулировка выходного тока. При необходимости откройте герметизирующую крышку, закрывающую потенциометры, и установите необходимое выходное напряжение и ток: Vadj – регулировка напряжения, ladj – регулировка тока. Установите крышку на место.
- 3.10. Дайте поработать источнику 20 минут с подключенной нагрузкой, которую Вы предполагаете использовать. Источник питания должен находиться в тех же условиях, как и при последующей эксплуатации.

^{**} При входном напряжении 230 В и полной нагрузке.

- 3.11. Проверьте температуру корпуса источника питания. Максимальная температура корпуса источника в установившемся режиме не должна превышать +70 °C. Если температура корпуса выше, необходимо уменьшить нагрузку, обеспечить лучшую вентиляцию или использовать более мощный источник питания.
- 3.12. Отключите источник от сети после проверки.

4. ОБЯЗАТЕЛЬНЫЕ ТРЕБОВАНИЯ И РЕКОМЕНДАЦИИ ПО ЭКСПЛУАТАЦИИ

Внимание! Не допускается использовать источник питания совместно с диммерами (регуляторами освещения), включенными в сети ~220 В!

- 4.1. Соблюдайте условия эксплуатации оборудования:
 - 7 Температура окружающего воздуха -40...+70 °С (см. график зависимости от нагрузки);
 - Относительная влажность воздуха не более 90% при 20 °C, без конденсации влаги;
 - Отсутствие в воздухе паров и примесей агрессивных веществ (кислот, щелочей и пр.).
- 4.2. Качество электроэнергии должно соответствовать ГОСТ 32144-2013, ГОСТ 29322-2014.
- 4.3. Для естественной вентиляции обеспечьте свободное пространство вокруг источника питания не менее 20 см, как изображено на Рис. 1. При невозможности обеспечить свободное пространство используйте принудительную вентиляцию.
- 4.4. Не нагружайте источник питания более 80% от его максимальной мощности. Учитывайте, что с повышением температуры окружающей среды, максимальная мощность источника питания снижается, и при температуре, близкой к максимальной, нагрузка должна составлять не более 60% от максимально допустимой (см. график зависимости на Рис. 2).
- 4.5. Не устанавливайте источник питания вблизи нагревательных приборов или горячих поверхностей.
- 4.6. При использовании в системе нескольких источников питания не устанавливайте их вплотную друг к другу.
- 4.7. Не располагайте источник питания вплотную к нагрузке или на ней.
- 4.8. Не допускайте воздействия прямых солнечных лучей на поверхность источника питания.
- 4.9. Не размещайте источник в местах и нишах, где может скапливаться вода. Нахождение источника в воде (лужа, тающий снег) вызывает разрушающие электрохимические процессы.
- 4.10. Не соединяйте выходы двух и более источников питания.
- 4.11. При выборе места установки источника предусмотрите возможность обслуживания. Не устанавливайте источник в местах, доступ к которым будет впоследствии невозможен.
- 4.12. Возможные неисправности и методы их устранения

Проявление неисправности	Причина неисправности	Метод устранения		
Источник питания не работает.	Нет контакта в соединениях.	Проверьте все подключения.		
	Неправильная полярность подключения нагрузки.	Подключите нагрузку, соблюдая полярность.		
	Короткое замыкание в нагрузке.	Устраните короткое замыкание.		
	Перепутаны вход и выход источника питания.	Замените вышедший из строя источник питания.		
Источник света, подключенный к блоку питания, мигает.	Превышена допустимая нагрузка.	Уменьшите нагрузку или используйте более мощный блок питания.		
	Срабатывает защита от перегрева.	Обеспечьте вентиляцию блока питания или уменьшите нагрузку.		
	В режиме СС подключена нагрузка с низким прямым напряжением.	Замените нагрузку или установите подходящий источник питания.		
	В цепи питания установлен выключатель с индикатором.	Удалите индикатор или замените выключатель.		

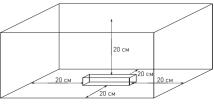
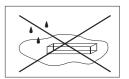



Рис. 1.

Максимальная допустимая нагрузка,

% от мощности источника 8 80 20 40 -40 -30 -20 -10 0 10 20 30 40 50 60 70 Температура окружающей среды (ta), °C

Рис. 2.

