НПК "МИКРОФОР"

ГИГРОМЕТР ИВА-10М

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ЦАРЯ.2772.010 РЭ

1. ВВЕДЕНИЕ

Настоящее руководство по эксплуатации, объединенное с техническим описанием и методикой поверки, является документом, удостоверяющим гарантированные предприятием-изготовителем основные параметры и технические характеристики гигрометра Ива-10М (в дальнейшем - гигрометра).

Кроме того, документ позволяет ознакомиться с устройством и принципом работы гигрометра и устанавливает правила эксплуатации, соблюдение которых обеспечивает поддержание его в постоянной готовности к действию.

Гигрометр изготовлен в соответствии ТУ 4311-012-77511225-2011.

2. НАЗНАЧЕНИЕ

- 2.1 Гигрометр Ива-10М представляет собой автономный, переносной, цифровой прибор и предназначен для измерения температуры точки росы(инея) сжатого воздуха, азота, инертных и других неагрессивных газов, применяемых в различных технологических процессах промышленности, энергетики и сельского хозяйства.
- 2.2 По устойчивости к механическим воздействиям и по защищенности от воздействия окружающей среды гигрометр выполнен в обыкновенном исполнении по ГОСТ Р 52931-2008.
 - 2.3 Рабочие условия применения:
 - температура, °Сот минус 15 до плюс 50;
 - относительная влажность, % до 95 при температуре до 35°C и более низких температурах без конденсации влаги;
 - атмосферное давление, кПа от 84 до 106;
 - избыточное давление анализируемого газа, бар не более 10.

3. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

- 3.1 Диапазон измерений:
- температуры точки росы/инея *, °С от минус 60 до плюс 48;
- избыточного давления, бар...... от 0 до 10;

Примечания

- в диапазоне измерений температуры точки росы (инея) от минус 60 °C до 0 °C гигрометр выводит на индикатор значения влажности в единицах температуры точки инея;
- в диапазоне измерений температуры точки росы (инея) от 0 до плюс 48 гигрометр выводит на индикатор значения влажности в единицах температуры точки росы.
- 3.2 Пределы допускаемой абсолютной погрешности измерений температуры точки росы (инея) при температуре газа 23°C в диапазоне измерений от минус 60°C точки инея до плюс 20°C точки росы, °C не более..... ±2.
- 3.3 Зависимость диапазона и абсолютной погрешности измерений температуры точки росы (инея) от температуры измеряемого газа приведена на рисунке 1

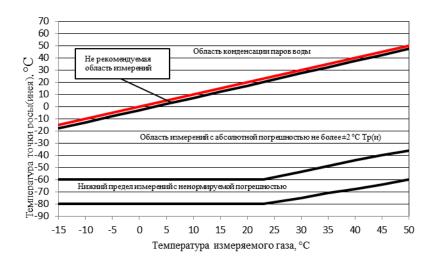


Рисунок 1 - Зависимость диапазона и абсолютной погрешности измерения температуры точки росы (инея) от температур измеряемого газа.

- 3.4 Пределы допускаемой основной абсолютной погрешности измерений избыточного давления* не более, бар \pm (0,05+0,02P**);
 - * после выполнения установки «0»;
 - ** Р- измеренное значение избыточного давления в барах.
- 3.5 Пределы дополнительной погрешности измерения избыточного давления, вызванной изменением температуры измеряемой среды в рабочем диапазоне температур, не превышает 0,5 от основной допускаемой абсолютной погрешности.
- 3.6 Гигрометр может рассчитывать массовую концентрации влаги в контролируемом газе. Величина массовой концентрации влаги может быть выведена на индикатор и выражается в граммах на кубический метр (Γ/M^3) .
- 3.7 Гигрометр может рассчитывать объемную долю влаги в контролируемом газе. Величина объемной доли влаги может быть выведена на индикатор и выражается в млн $^{-1}$ (ppmV).
- 3.8 В гигрометре предусмотрена возможность коррекции показаний влажности с учетом давления анализируемого газа. Коррекция осуществляется для приведения значений точки росы/инея, массовой концентрации и объемной доли влаги к нормальному (1 бар) и стандартному (8 бар) абсолютным давлениям. Пересчет осуществляется по соотношениям для идеального газа.
- 3.9 Гигрометр имеет встроенный индикатор расхода, показывающий расход газа через камеру с преобразователем влажности и температуры.

Диапазон индикации расхода, нормальных л/мин от 0 до 2.

3.10 Гигрометр содержит часы и внутреннюю память, в которую протоколируются результаты измерений. Интервал записи задается пользователем в диапазоне от 5 минут до 12 часов. Во включенном состоянии гигрометра запись в память осуществляется с интервалом 1 минута. Гигрометр сохраняет результаты более 200000 измерений.

Гигрометр снабжен цифровым выходом для связи с персональным компьютером по интерфейсу USB. Программное обеспечение, поставляемое с гигрометром, позволяет считывать накопленные результаты измерений на ПК.

- 3.11 Питание гигрометра осуществляется от встроенного аккумулятора напряжением 3,7 В.
- 3.12 Время непрерывной работы от полностью заряженного аккумулятора не менее 6 час.
 - 3.13 Габаритные размеры гигрометра, мм, не более $260 \times 210 \times 130$.

При эксплуатации гигрометра в условиях высокой загрязненности контролируемого газа (масло, пыль) необходимо применение входного фильтра (см. таблицу 1).

4. СОСТАВ ГИГРОМЕТРА И КОМПЛЕКТ ПОСТАВКИ

- 4.1. Гигрометр выполнен в переносном кейсе со съемной крышкой (рис.2).
- 4.2. Комплект поставки гигрометра приведен в таблице 1.

Рис.2. Гигрометр Ива-10М в кейсе.

Рис.3. Лицевая панель гигрометра Ива-10М со снятой крышкой.

Таблица 1.

No	Наименование изделия или документа	Обозначение	Количество
1	Гигрометр ИВА-10М	ЦАРЯ.2772.010	1
2	Замок быстроразъемного соединения с запиранием с полиэтиленовой трубкой		1
	Ø6мм		
3	Фитинг для полиэтиленовой трубки Ø6 мм с присоединением G1/8 с накидной гайкой		1
4	Быстроразъемное соединение для поли- этиленовой трубки Ø6 мм с присоеди- нением G1/8		1
5	Входной фильтр		см. приме- чание
6	Руководство по эксплуатации	ЦАРЯ.2772.010 РЭ	1
7	Компакт-диск с программным обеспечением для гигрометра ИВА-10М		1
8	Кабель для подключения гигрометра к ПК	ЦАРЯ.3660.023	1
9	Зарядное устройство 5,2В, 1А		1

Примечание. Входной фильтр предназначен для очистки газа, поступающего в гигрометр от пыли и аэрозолей. Выполнен из спеченного фторопластового порошка. Размер пор менее 1 мкм. Поставляется по согласованию с Заказчиком.

5. УСТРОЙСТВО И РАБОТА ГИГРОМЕТРА

Гигрометр состоит из корпуса со съемной откидной крышкой (кейса) в котором под лицевой панелью размещены: пробоотборное устройство, измерительные преобразователи влажности и давления, схема обработки сигналов и индикации, аккумулятор.

На лицевой панели (рис.3) расположены сенсорный дисплей, кнопка включения, mini-USB разъем для подключения к персональному компьютеру и зарядному устройству, индикатор зарядки аккумулятора, звукоизлучатель, входной и выходной штуцеры и два вентиля.

Работа гигрометра полностью согласуется с документом ГОСТ ИСО 8573-3-2006. Сжатый воздух. Часть 3. Методы контроля влажности.

В гигрометре использован рекомендованный метод определения влажности — «...Измерение электрическим сенсором, основанном на электрической емкости...» (ГОСТ ИСО 8573-3-2006 стр.4, табл.6).

Согласно общим положениям (п.6.1) ГОСТ ИСО 8573-3-2006 пробоотборное устройство позволяет определять точку росы при атмосферном или реальном давлении воздуха. Наличие индикатора расхода и вентилей для регулировки расхода обеспечивает постоянный расход воздуха в пределах допустимых значений.

Используемый метод отбора проб — «Экстракция» (п.6.2.2.2 ГОСТ ИСО 8573-3-2006) или «Измерение при сниженном давлении» (п.6.2.2.3 ГОСТ ИСО 8573-3-2006).

Полностью выполняются «Требования к отбору проб» (п.6.3 ГОСТ ИСО 8573-3-2006). Материалы, используемые для отвода воздуха в пробоотборную систему, не влияют на результат измерений (п.6.3.2). Гигрометр имеет датчик давления для регистрации давления в пробоотборной системе (п.6.3.3). Для оценки «...достижения стабильности работы измерительной системы...» гигрометр имеет графический режим вывода результатов измерений, позволяющий наглядно определить момент установления показаний (п.6.3.5).

Для оценки результатов контроля (п.8 ГОСТ ИСО 8573-3-2006) в гигрометре имеется возможность приведения измеренного значения к стандартным условиям. Согласно ГОСТ ИСО 8573-3-2006 стандартными являются следующие условия:

«...температура 20°С; давление 7 бар...»

Следует обратить внимание на небрежность перевода исходного документа ISO 8573-3, в котором стандартные условия описаны следующим образом:

«...Compressed air temperature 20°C Compressed air pressure 7 bar(e)...»

Таким образом, под стандартным давлением подразумевается <u>избыточное</u> давление 7 бар (<u>абсолютное</u> давление 8 бар).

В гигрометре реализовано приведение измеренных значений к абсолютному давлению 1 бар и 8 бар.

Пробоотборное устройство гигрометра обеспечивает регулирование расхода газа через камеру с измерительным преобразователем влажности и температуры в

широком диапазоне входных давлений. Пневматическая схема пробоотборного устройства (рис.3) содержит входной штуцер «Вход», входной вентиль 1, проточную камеру с измерительным преобразователем влажности и температуры 2,3, датчик давления в камере 4, выходной вентиль 5, датчик расхода газа 6 и выходной штуцер «Выход». Пробоотборное устройство рассчитано для эксплуатации при максимальном рабочем давлении до 10 бар изб.

В измерительном преобразователе влажности и температуры для измерения относительной влажности используется сорбционно-емкостной сенсор. Принцип действия сорбционно-емкостного сенсора основан на зависимости диэлектрической проницаемости полимерного влагочувствительного слоя, размещенного между двумя электродами, один из которых влагопроницаем, от влажности окружающей среды.

Для измерения температуры используется платиновый термопреобразователь сопротивления.

Сенсоры влажности и температуры установлены в цилиндрический корпус измерительного преобразователя и закрыты колпачком, обеспечивающим их защиту от механических повреждений и свободный доступ анализируемой среды.

В корпусе преобразователя располагается схема обработки и выдачи сигналов, выполненная на основе микроконтроллера и осуществляющая следующие функции:

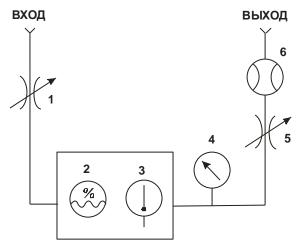


Рис.3. Пневматическая схема пробоотборного устройства

- измерение сигнала по каналам влажности и температуры;
- вычисление значений относительной влажности и температуры;
- температурная коррекция значения относительной влажности;
- поддержание заданной температуры сенсора влажности путем изменения величины измерительного тока, протекающего через платиновый термопреобразователь сопротивления;
 - взаимодействие с внешними устройствами по протоколу ModBus.

Основной особенностью измерительного преобразователя влажности используемого в гигрометре является возможность автокоррекции сдвига градуировочной характеристики сенсора влажности.

Под влиянием различных внешних воздействий емкость сенсора влажности может незначительно изменяться. При измерении высоких значений относительной влажности сдвиг градуировочной характеристики, например, на 0.5% RH (Relative Humidity — относительная влажность, англ.) не вызовет значительной ошибки при вычислении значения точки росы. Так, при температуре 25° C и RH=20% точка росы газа составляет 0.5° C, а при RH=20.5% - 0.84° C, т.е. погрешности 0.5%RH при температуре 25° C и RH=20% соответствует погрешность измерения точки росы 0.34° C.

Значительно худшая ситуация наблюдается при низких значениях относительной влажности. При температуре 25°C и RH=0,1% точка инея газа составляет - минус 51,7°C, при RH=0,6% - минус 36,5°C, т.е. погрешности 0,5%RH при температуре 25°C и RH=0,1% соответствует погрешность измерения точки росы 15,2°C, что совершенно недопустимо.

Для устранения влияния дрейфа градуировочной характеристики на точность измерения низких значений относительной влажности в гигрометре Ива-10 применена технология автокоррекции дрейфа характеристик сенсора, функционирующая следующим образом.

В гигрометре сенсор влажности и платиновый термопреобразователь сопротивления находятся в тепловом контакте. Схема измерения температуры может в широких пределах менять измерительный ток через термопреобразователь сопротивления, что позволяет поддерживать заданную температуру сенсора.

Процедура автокоррекции заключается в следующем:

- 1. После запуска процедуры фиксируются показания сенсоров температуры T_1 и относительной влажности RH'_1 .
- 2. Устанавливается новое значение температуры сенсоров T_2 , как правило, около $60^{\circ}C$.
- 3. После стабилизации показаний температуры и влажности через определенное время фиксируются значения показаний T_2 и RH'_2 и выключается режим нагрева сенсоров.
- 4. Микроконтроллер осуществляет расчет величины сдвига градуировочной характеристики ΔRH и корректирует коэффициенты в памяти измерительного преобразователя.

В общем виде расчет величины сдвига ΔRH можно представить следующим образом:

По определению относительная влажность газа RH - это отношение парциального давления водяного пара \mathbf{p} к давлению насыщенного пара при данной температуре $\mathbf{p_s}^T$, выраженное в процентах:

$$RH = 100 \cdot p / p_s^{T}.$$

Таким образом,

RH1 =
$$100 \cdot p / p_s^{T1}$$
,
RH2 = $100 \cdot p / p_s^{T2}$,

где RH1 и RH2 «истинные» значения относительной влажности газа при

температурах Т1 и Т2.

Отсюда

$$m RH2 = RH1 \cdot p_s^{T1} \, / \, p_s^{T2} \!,\!\!\!\!= k \cdot RH1,$$
 где $m k = p_s^{T1} \, / \, p_s^{T2}.$

Пусть сдвиг градуировочной характеристики преобразователя составляет ΔRH . Тогда

RH1 = RH'₁ +
$$\Delta$$
RH,
RH2 = RH'₂ + Δ RH

Отсюда,

RH2/ RH1 =
$$(RH'_2 + \Delta RH)/(RH'_1 + \Delta RH) = k$$
,
 $\Delta RH = (k \cdot RH'_1 - RH'_2)/(1 - k)$.

Проведение автокоррекции целесообразно при относительной влажности газа менее 10% и температуре менее 40° C.

Внутри корпуса гигрометра также расположены аккумулятор, схема обработки сигналов, сенсорный дисплей и звукоизлучатель. Схема обработки сигналов выполнена на основе микроконтроллера и осуществляет следующие функции:

- опрос измерительных преобразователей влажности и давления;
- вычисление значений массовой концентрации и объемной доли влаги, температуры точки росы (инея);
 - индикация измеренных значений на жидкокристаллическом дисплее;
 - протоколирование результатов измерений во внутреннюю память;
 - поддержка USB-интерфейса.

6. ОБЗОР ОСНОВНЫХ РЕЖИМОВ ГИГРОМЕТРА

6.1. Включение гигрометра

Для включения гигрометра необходимо нажать и удерживать в течение 1 с кнопку «ВКЛ» на передней панели. При этом гигрометр перейдет в режим тестирования и на индикаторе высветится следующая надпись:

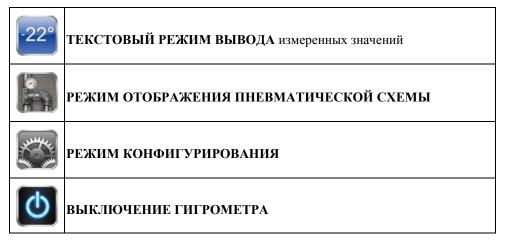
Через 10 с при успешном выполнении процедуры тестирования гигрометр перейдет в текстовый режим вывода:

В этом режиме на дисплей выводится в самой верхней строке - текущие дата, время и уровень (состояние) заряда аккумулятора. Ниже выводится наименование единицы измерения и значение давления, к которому осуществляется приведение влажности (в скобках), затем - измеренное значение параметра. В нижних строках отображаются значения температуры (25,2°) и избыточного давления (0,0 бар) в измерительной камере. В правой части дисплея находится изображение ротаметра с поплавком.

6.2. Основное меню

В текстовом режиме вывода прикосновение к дисплею выбирает режим вывода основного меню:

Основное меню содержит 6 кнопок, нажатие на которые переводит гигрометр в соответствующие режимы:



МАСТЕР ИЗМЕРЕНИЙ – содержит пошаговые инструкции по процедуре измерений, сопровождающиеся голосовыми подсказками. Рекомендуется для начинающих пользователей

ГРАФИЧЕСКИЙ РЕЖИМ ВЫВОДА измеренных значений.

Используется для наблюдения за динамикой установления показаний с целью определения момента их фиксации



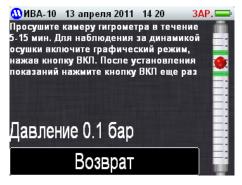
Описание режимов, выбираемых из основного меню, приводится в следующих разделах.

6.2.1. Мастер измерений

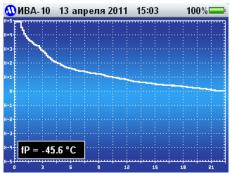
Мастер измерений содержит пошаговые инструкции по процедуре измерений, сопровождающиеся голосовыми подсказками. При входе в этот режим Пользователю предлагается выполнить полный объем процедур, обеспечивающих получение наиболее точного результата. Некоторые из них не обязательно проводить при каждом измерении (установка нуля, автокоррекция). Поэтому использование этого режима ориентировано на начинающих Пользователей.

При входе в режим «Мастер измерений» на дисплей выводится сообщение, предлагающее провести подготовку к установке нуля датчиков давления и расхода и, затем, провести ее:

Выполните предлагаемые действия:


- отключите гигрометр от линии с анализируемым газом;
- закройте входной вентиль;
- полностью откройте выходной вентиль;
- нажмите кнопку «ВКЛ» на лицевой панели гигрометра.

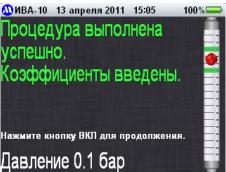
После этого на дисплей выводится новое сообщение:



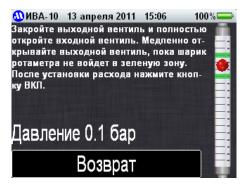
Выполните предлагаемые действия:

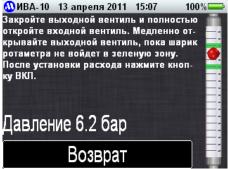
- подключите гигрометр к линии с анализируемым газом;
- медленно открывайте входной вентиль, пока шарик ротаметра на дисплее не окажется в зеленой зоне (это соответствует расходу около 1,5 л/мин);
- нажмите кнопку «ВКЛ» на лицевой панели гигрометра для перехода к следующей операции:

Нажмите кнопку ВКЛ еще раз и наблюдайте за динамикой установления показаний:

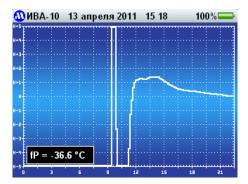

После установления показаний нажмите кнопку «ВКЛ»:

Нажмите кнопку «ВКЛ» для подтверждения проведения автокоррекции. После этого на дисплее появится окно с временем до окончания процедуры:


После успешного завершения автокоррекции на дисплей выводится следующее сообщение:


Если относительная влажность газа превышает максимально допустимую (10%), выдается сообщение о невозможности проведения автокоррекции.

После нажатия кнопки «ВКЛ» сообщение на дисплее предлагает подготовить гигрометр к измерению влажности газа при давлении близком к давлению газа в линии:


Закройте выходной вентиль и полностью откройте входной вентиль. Медленно открывая выходной вентиль, установите оптимальный расход газа $(1,2...1,8\pi/\text{мин})$:

После нажатия кнопки «ВКЛ» на дисплее появится следующее сообщение:

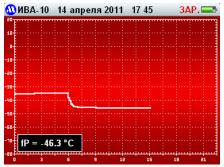
Нажмите кнопку «ВКЛ» еще раз и наблюдайте за динамикой установления показаний:

После установления показаний нажмите кнопку «ВКЛ» и зафиксируйте измеренные значения влажности, температуры и давления:

После фиксации показаний закройте входной вентиль и отключите гигрометр от линии с анализируемым газом.

6.2.2. Графический режим вывода

Графический режим вывода измеренных значений используется для наблюдения за динамикой установления показаний с целью определения момента их фиксации. При входе в этот режим на дисплее отображается график зависимости точки росы от времени измерений:


По вертикальной оси отложены значения температуры точки росы (инея) в диапазоне ± 5 °C от текущего значения. По горизонтальной оси отложено время измерений в минутах. В нижнем левом углу дисплея расположено окно с текущим значением точки росы (инея) при рабочем давлении.

В процессе накопления данных кривая зависимости точки росы (инея) газа от времени достигает правого края графика, после чего каждое новое измерение сдвигает весь график влево и на индикатор выводятся результаты за последние 22,5 минуты. При работе гигрометра в этом режиме автовыключение гигрометра осуществляется через 10 минут после полного заполнения графика.

Согласно п.6.2.5 ГОСТ ИСО 8573-3-2006 «...Измерения следует начинать и проводить при достижении стабильности работы измерительной системы. Результаты двух последовательных измерений, проведенных с интервалом не менее 20 мин, не должны отличаться более чем на величину неопределенности (погрешности) измерений...».

Таким образом, в режиме графического вывода можно оценить величину изменения показаний в течение 20 минут, соотнести ее с величиной погрешности гигрометра в этом диапазоне точки росы и температуры (см. таблицу 1) и принять решение о завершении процесса измерений.

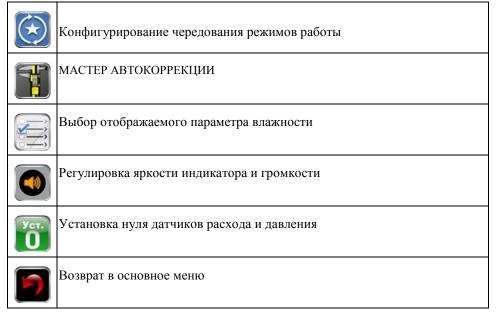
При нажатии на сенсорный дисплей в режиме графического вывода график изменяется следующим образом:

По вертикальной оси этого графика отложены значения температуры точки росы (инея) в диапазоне от -80 до 20 °C.

6.2.3. Текстовый режим вывода

В этом режиме на дисплей выводится в самой верхней строке - текущие дата, время и уровень (состояние) заряда аккумулятора. Ниже выводится наименование единицы измерения и значение давления, к которому осуществляется приведение влажности (в скобках), затем - измеренное значение параметра. В нижних строках отображаются значения температуры $(25,2^{\circ})$ и избыточного давления (0,0) бар) в измерительной камере. В правой части дисплея находится изображение ротаметра с поплавком.

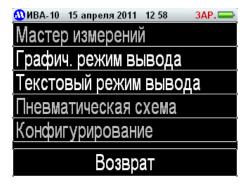
6.2.4. Режим отображения пневматической схемы


Режим отображения пневматической схемы предназначен для продвинутых Пользователей и позволяет наглядно представить физический смысл различных манипуляций с гигрометром.

6.2.5. Режим конфигурирования

При выборе этого режима на дисплее появляется новое меню с 6 кнопками,

нажатие на которые переводит гигрометр в соответствующие режимы:


Описание режимов, выбираемых из меню конфигурирования, приводится в следующих разделах.

6.2.5.1. Конфигурирование чередования режимов работы

Для упрощения работы с прибором и минимизации обращения к сенсорному дисплею при выборе режимов работы необходимо сконфигурировать гигрометр. Для этого необходимо войти в режим конфигурирования, нажав на дисплее соответствующую кнопку

после чего на дисплее отобразится меню конфигурирования чередования режимов работы:

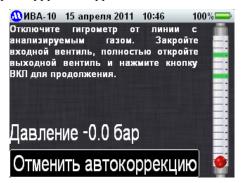
В этом меню отображены пять режимов, между которыми (если они активны) происходит чередование при последовательном нажатии на кнопку «ВКЛ» на панели гигрометра. Активизация режима происходит при касании соответствующей строки на дисплее. Активный режим отображается белым цветом, неактивный серым.

На приведенном выше рисунке выбраны активными два режима — ТЕКСТОВЫЙ РЕЖИМ ВЫВОДА и ГРАФИЧЕСКИЙ РЕЖИМ ВЫВОДА. Выбранная конфигурация сохраняется и при выключении гигрометра.

Так, при описанной выше конфигурации чередования режимов после нажатия на кнопку «ВКЛ» и тестирования гигрометр будет переходить в текстовый режим вывода показаний. При дальнейших последовательных нажатиях на кнопку «ВКЛ» будут чередоваться графические и текстовые режимы вывода.

6.2.5.2. Мастер автокоррекции

При нажатии на кнопку

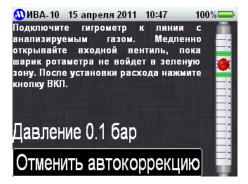

запускается процедура «Мастер автокоррекции», содержащая пошаговые инструкции по процедуре автокоррекции, сопровождающиеся голосовыми подсказками.

Процедура автокоррекции должна выполняться при установившемся значе-

нии влажности в измерительной камере. При этом, чем ниже значение влажности при проведении операции, тем выше точность компенсации дрейфа характеристики сенсора. Поэтому продувка камеры анализируемым газом при автокоррекции должна осуществляться при пониженном (атмосферном) давлении в измерительной камере.

Все подготовительные операции, предлагаемые «Мастером автокоррекции», направлены на создание оптимальных условий – установившееся минимальное значение влажности газа.

При входе в процедуру автокоррекции на дисплей выводится окно:



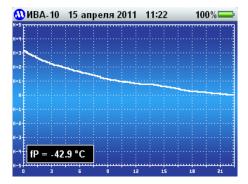
Выполните предлагаемые действия:

- отключите гигрометр от линии с анализируемым газом;
- закройте входной вентиль;
- полностью откройте выходной вентиль;
- нажмите кнопку «ВКЛ» на лицевой панели гигрометра.

После этого на дисплей выводится новое сообщение. Выполните предлагаемые действия:

- подключите гигрометр к линии с анализируемым газом;
- медленно открывайте входной вентиль, пока шарик ротаметра на дисплее не окажется в зеленой зоне (это соответствует расходу около 1,5 л/мин):

Примечание. Если точка подключения гигрометра к линии с анализируемым газом снабжена вентилем, рекомендуется проводить осушку не только внут-


ренних коммуникаций пробоотборного устройства гигрометра, но и подводящих коммуникаций. Для этого необходимо после подключения гигрометра к точке отбора:

- -убедиться, что вентиль на линии закрыт;
- -полностью открыть входной и выходной вентили гигрометра;
- медленно открывать вентиль в точке подключения, пока шарик ротаметра не войдет в зеленую зону;
 - после установки расхода нажать кнопку «ВКЛ».


На дисплее высветится следующее окно:

Просушите камеру гигрометра в течение 5-15 минут. Для наблюдения за динамикой осушки включите графический режим, нажав кнопку «ВКЛ». Критерием установления показаний гигрометра можно считать изменение значения точки росы на графике не более, чем на 2° С за 20 минут. Не обязательно ждать 20 минут для такой оценки. Можно проэкстраполировать результаты измерений за меньший отрезок времени. Так, если за 4 минуты точка росы изменилась менее чем на $0,4^{\circ}$ С, можно считать показания установившимися.

После установления показаний нажмите кнопку «ВКЛ» еще раз:

Для проведения автокоррекции нажмите кнопку «ВКЛ». При запуске процедуры на дисплей выводится время до ее окончания:

При успешном выполнении процедуры выводится сообщение:

или сообщение о невозможности проведения процедуры:

6.2.5.3. Выбор отображаемого параметра влажности

При нажатии на кнопку

гигрометр переходит в режим выбора отображаемого параметра влажности - единицы измерения влажности газа, в которой представляются результаты измерения. При входе в этот режим на индикаторе высвечивается следующее меню:

Прикосновением к соответствующим участкам сенсорного дисплея можно выбрать следующие параметры вывода:

Температура точки росы (°С)

- при рабочем давлении (давлении в пробоотборном устройстве);
- приведенная к нормальному давлению (1 бар абс.);
- приведенная к стандартному абсолютному давлению 8 бар.

Относительная влажность газа (%)

- при рабочем давлении;
- приведенная к нормальному давлению (1 бар абс.);
- приведенная к стандартному абсолютному давлению 8 бар.

Массовая концентрация влаги (Γ/M^3)

- при рабочем давлении;
- приведенная к нормальному давлению (1 бар абс.);

- приведенная к стандартному абсолютному давлению 8 бар.

Объемная доля влаги (млн⁻¹, ppm)

- при рабочем давлении;
- приведенная к нормальному давлению (1 бар абс.);
- приведенная к стандартному абсолютному давлению 8 бар.

Выбранный параметр меняет цвет с серого на белый.

6.2.5.4. Регулировка яркости индикатора и громкости

При нажатии на кнопку

гигрометр переходит в режим регулировки яркости индикатора и громкости голосовых сообшений:

Регулировка яркости дисплея и громкости голосовых сообщений осуществляется перемещением соответствующего указателя на сенсорном дисплее.

6.2.5.5. Установка нуля датчиков расхода и давления

Вход в процедуру установки «0» датчиков давления и расхода осуществляется при нажатии кнопки

При входе в этот режим высвечивается следующее меню:

Перед выполнением этой процедуры необходимо отсоединить гигрометр от газовой линии и открыть выходной вентиль. Установка нуля датчиков давления и расхода происходит при нажатии кнопки «ВКЛ». После выполнения процедуры выводится голосовое сообщение «Установка нуля завершена» и гигрометр возвращается в меню режима конфигурирования.

6.2.5.6. Возврат в основное меню

При нажатии на кнопку


на сенсорном дисплее происходит возврат в основное меню.

6.2.6. Выключение гигрометра

При нажатии на кнопку

на сенсорном дисплее выводится окно с запросом подтверждения:

Выключение гигрометра производится при нажатии на кнопку «Да». При нажатии на кнопку «Нет» гигрометр возвращается в основное меню.

При отсутствии активности Пользователя гигрометр выключается принудительно через 10 мин после последнего нажатия кнопки «ВКЛ» или любого действия с сенсорным дисплеем. Исключение составляет режим графического вывода (синий график). В этом режиме принудительное выключение гигрометра происходит через 10 мин после заполнения графика.

7. ПОДГОТОВКА К РАБОТЕ И РАБОТА С ГИГРОМЕТРОМ

Перед проведением измерений снимите верхнюю крышку гигрометра, открыв ее на 90° и сдвинув вверх. Для включения гигрометра необходимо нажать и удерживать в течение 1 с кнопку «**ВКЛ**» на передней панели. При этом гигрометр перейдет в режим тестирования и через 10 c - в текстовый режим вывода.

Ниже приведена рекомендуемая последовательность операций, обеспечивающая получение наиболее точного результата.

- 1) Убедитесь, что гигрометр отключен от линии с анализируемым газом. Закройте входной вентиль, полностью откройте выходной вентиль.
- **2) Если** показания индикатора давления отличаются от нуля, рекомендуется провести процедуру установки нуля датчика давления, как описано в разделе 6.2.5.5.
- **3) Просушите пробоотборное устройство,** продувая его анализируемым газом при атмосферном давлении. Для этого подключите гигрометр к линии с анализируемым газом. Медленно открывайте входной вентиль, пока шарик ротаметра не войдет в зеленую зону.

Примечание. Если точка подключения гигрометра к линии с анализируемым газом снабжена вентилем, рекомендуется проводить осушку не только внутренних коммуникаций пробоотборного устройства гигрометра, но и подводящих коммуникаций. Для этого необходимо после подключения гигрометра к точке отбора:

- -убедиться, что вентиль на линии закрыт;
- -полностью открыть входной и выходной вентили гигрометра;
- медленно открывать вентиль в точке подключения, пока шарик ротаметра не войдет в зеленую зону.
- **4)** Перейдите в режим графического вывода и дождитесь установления показаний влажности на графике. Критерием установления показаний гигрометра можно считать изменение значения точки росы на графике не более, чем на 2°C за 20 минут. Не обязательно ждать 20 минут для такой оценки. Можно проэкстраполировать результаты измерений за меньший отрезок времени. Так, если за 4 минуты точка росы изменилась менее чем на 0,4°C, можно считать показания установившимися.
- 5) Рекомендуется периодически проводить процедуру автокоррекции показаний гигрометра. Для этого после стабилизации показаний выберите в меню прибора процедуру «Мастер автокоррекции» и запустите ее. После завершения про-

цедуры (см. п.6.2.5.2) можно приступать к процедуре измерений.

Основным условием проведения процедуры автокоррекции является стабильность влажности газа в процессе ее выполнения. Кроме того, автокоррекция осуществляются только при относительной влажности газа менее 10%. Следует иметь ввиду что, чем ниже точка росы газа при которой производится автокоррекция, тем выше точность этой процедуры. Для этого процедуру необходимо проводить при атмосферном давлении анализируемого газа в измерительной камере.

Периодичность выполнения процедуры зависит от условий эксплуатации и хранения гигрометра. Рекомендуемый интервал — неделя. При измерении влажности сухого газа (с точкой инея менее -40°C) рекомендуется проводить автокоррекцию ежедневно перед началом работы с прибором.

6) Перед началом измерений закройте выходной вентиль и полностью откройте входной вентиль. Медленно открывайте выходной вентиль, пока шарик ротаметра не войдет в зеленую зону. Это соответствует расходу газа около 1,5 л/мин. Оптимальное значение расхода анализируемого газа через измерительную камеру гигрометра — 0,5 ... 1,5 нормальных литра в минуту. Теоретически показания гигрометра не зависят от расхода. Однако, на практике, при малой величине расхода ухудшается быстродействие гигрометра из-за увеличения времени продувки газовых коммуникаций. При большой величине расхода увеличивается падение давление на входных коммуникациях и давление в измерительной камере становится отличным от давления в газовой магистрали.

Примечание. Если используется вентиль в точке подключения гигрометра к линии с анализируемым газом, перед началом измерений после просушки коммуникаций закройте выходной вентиль гигрометра и полностью откройте входной вентиль и вентиль на линии. Затем медленно открывайте выходной вентиль, пока шарик ротаметра не войдет в зеленую зону.

- 7) Для наблюдения за динамикой установления показаний перейдите в графический режим вывода. После стабилизации показаний перейдите в текстовый режим вывода и зафиксируйте значение влажности и давления в пробоотборном устройстве.
 - 8) Отключите гигрометр от магистрали.
- **9) Выключение** гигрометра осуществляется автоматически через 10 мин после последнего нажатия любой кнопки или через основное меню.

Зарядка аккумуляторной батареи

При постановке гигрометра на длительное хранение, а также при снижении уровня заряда аккумулятора до 20%, его следует зарядить.

Порядок зарядки аккумулятора следующий:

- вставьте разъем зарядного устройства в разъём «Зарядка/ПК» на торцевой панели измерительного блока и подключите зарядное устройство к сети 220 В, при этом должен загореться красным цветом светодиод рядом с разъемом;

- осуществляйте зарядку аккумуляторной батареи, пока светодиод не изменит цвет с красного на зеленый;
 - отключите зарядное устройство от сети 220В и гигрометра.

Если напряжение аккумулятора становится ниже допустимого значения, то при включении гигрометр выдает сообщение «Аккумулятор разряжен» и через 2 секунды выключается.

Если напряжение аккумулятора становится ниже некоторого порогового уровня, гигрометр не реагирует на нажатие кнопок.

Сброс гигрометра при зависании программы

Практически любое микропроцессорное устройство подвержено риску зависания. Для выхода из этого состояния обычно используют специальную кнопку «RESET» или кратковременное отключение питания.

Для вывода гигрометра Ива-10 из «зависшего» состояния (если оно когданибудь возникнет) необходимо нажать и в течение 10-15 с удерживать кнопку «ВКЛ». Через 10-15 с после отпускания кнопки можно вновь нажать кнопку «ВКЛ» для включения гигрометра.

Если гигрометр не включается, попробуйте зарядить аккумулятор — если гигрометр находился в зависшем состоянии длительное время, аккумулятор мог разрядиться.

Работа с памятью

Гигрометр может записывать в память текущие значения влажности, температуры и давления с заданным интервалом. При этом гигрометр автоматически «пробуждается» без включения индикатора, производит измерения, записывает результаты в память и «засыпает». Интервал записи может быть установлен с компьютера в диапазоне от 5 мин до 12 часов. При значении интервала «**00:00**» режим записи в память блокируется.

Если гигрометр включен «вручную», результаты измерений записываются в память с интервалом 1 минута.

Для считывания накопленных данных необходимо подключить гигрометр с помощью кабеля связи к USB-порту персонального компьютера и запустить программу Iva10.

Программа Iva10 обеспечивает считывание информации из памяти, формирует архив данных для каждого гигрометра, создает текстовый и графический отчеты.

Работа с программой описана в документе «Программное обеспечение **Iva10**», приведенном в Приложении 1.

8. МЕТОДИКА ПОВЕРКИ

8.1. Настоящая методика устанавливает методы и средства первичной и периодических поверок гигрометра.

Каждый гигрометр при выпуске из производства должен пройти первичную поверку. Результаты первичной поверки должны быть оформлены, как указано в п.8.9.

Периодичность поверки 1 раз в год.

- 8.2. Операции поверки.
- 8.2.1. При проведении поверки должны выполняться операции, указанные в таблице 2.

Таблица 2

		Обязательность проведения	
Наименование	Номер	операции при	
операции	пункта	первичной	периодической
		поверке	поверке
1 Внешний осмотр и опробование	8.8.1	Да	Да
2 Определение основной абсолютной			
погрешности измерения температуры	8.8.2	Да	Да
точки росы (инея)			
3 Определение основной абсолютной			
погрешности измерения избыточного	8.8.3	Да	Да
давления			

- 8.3. Средства поверки.
- 8.3.1. При проведении поверки должны применяться средства поверки и вспомогательное оборудование, указанные в таблице 3.
- 8.3.2. Средства поверки должны быть исправны, иметь техническую документацию и действующие свидетельства о поверке по ПР 50.2.006-94, а оборудование аттестаты по ГОСТ Р 8.568-97.
 - 8.4. Требования к квалификации поверителей.
- 8.4.1. К проведению поверки допускаются лица, имеющие среднетехническое или высшее образование и аттестованные на право проведения поверки.
 - 8.5. Требования безопасности.
- 8.5.1. Во время подготовки и проведения поверки необходимо соблюдать правила безопасной работы, установленные в технических описаниях на приборы, оговоренные в таблице 3.
 - 8.6. Условия поверки.
- 8.6.1. При проведении поверки должны быть соблюдены следующие условия:

 - 4) напряжение питания~187...242B±15%, 50Гц.

Наименование или обо- значение средства повер- ки и вспомогательного обо- рудования	Наименование и обозначение метрологической или технической или технической характеристики	Нормированное значение метрологической характеристики
1	2	3
1 Генератор влажного газа образцовый "Родник-2"	Диапазон воспроизводимой температуры точки росы (инея) Пределы допускаемой основной абсолютной погрешности воспроизводимой температуры точки росы(инея) (Дэт)	от минус 20°C до плюс 54°C ±0,1°C
2 Генератор влажного газа «Полюс-1»	Диапазон воспроизводимой температуры точки росы инея Пределы допускаемой основной абсолютной погрешности воспроизводимой температуры точки инея (ДЭТ)	от 0 °C до минус 100 °C ±0,2 °C
3 Измеритель температуры двухканальный прецизионный МИТ 2.05.	Пределы допускаемой основной абсолютной погрешности измерений температуры	± (0,004+10-5 t) °C
4 Термометр сопротивления платиновый эталонный ПТСВ 2-го разряда	Доверительные границы погрешности при доверительной вероятности 0,95	±0,02 °C
5 Калибратор давления Метран 502-ПКД-10П.	Диапазон измерений избыточного давления, МПа Приделы допускаемой основной погрешности	от 0 до 1 0,15%
6 Воздух сжатый	по ГОСТ 17433-76	

Примечание - Допускается использование других средств поверки с метрологическими характеристиками, не уступающими указанным в таблице 3

8.8 Проведение поверки

8.8.1 Внешний осмотр, опробование

При внешнем осмотре должно быть установлено:

- наличие принадлежностей в соответствии комплектностью согласно руководству по эксплуатации;
 - наличие маркировки, тип и заводской номер гигрометра;
- отсутствие механических повреждений, влияющих на работоспособность и метрологические характеристики гигрометра;
 - наличие четких надписей на органах управления.

Опробование проводится в соответствии с РЭ на гигрометр.

Идентификацию программного обеспечения (ПО) производят следующим образом:

- 1. Включают гигрометр в соответствии с пунктом 6.1
- 2. В период выполнения самотестирования гигрометра (примерно 10 c) считывают с его дисплея номер версии программного обеспечения установленного в приборе.
- 3. Сравнивают номер версии ПО с номером версии, указанной в эксплуатационной документации (1.02).

Проверку обеспечения защиты ПО СИ от несанкционированного доступа производят осмотром места установки пломбы. Проверяется отсутствие повреждений пломбы.

Результаты поверки считаются положительными, если:

- Номер версии ПО считанный с дисплея прибора совпадает с номером версии ПО, указанной в эксплуатационной документации.
 - Пломба не повреждена.

8.8.2 Определение основной абсолютной погрешности измерений температуры точки росы(инея)

- 8.8.2.1 Определение абсолютной погрешности измерений температуры точки росы (инея) проводят в следующей последовательности:
- 1) подключают гигрометр к выходу генератора влажного газа «Полюс-1». Все приборы, используемые при проверке, подготавливают к работе в соответствии с эксплуатационной документацией на них;
- 2) устанавливают расход газа через проточную камеру гигрометра в соответствии с п. 6.2.1;
- 3) устанавливают на выходе генератора влажного газа значение температуры точки инея (Toi) минус (58-60) °C. Значение влажности считают установившимся, если показания гигрометра не изменяются в течение не менее 15 минут;
- 4) снимают показания температуры точки инея с индикатора гигрометра (Ti);
- 5) далее повторяют подпункты 3), 4) при значениях температуры точки инея:

```
минус (38-40) °С;
минус (18-20) °С;
```

- 6) отключают гигрометр от генератора «Полюс-1» и подключают к выходу на внешний гигрометр генератора «Родник-2».
- 7) устанавливают на выходе генератора влажного газа значение температуры точки инея (Тоі) минус (8-10) °C. Значение влажности считают установившимся, если показания гигрометра не изменяются в течение не менее 15 минут;
- 8) снимают показания температуры точки росы (инея) с индикатора гигрометра (Ті);
- 9) далее повторяют подпункты 7), 8) при значениях температуры точки росы

0 плюс 2 °C;

плюс (18-20) °С.

Абсолютную погрешность при измерении температуры точки росы (инея) гигрометра Δ і определяют по формуле:

$$\Delta i = Ti - Toi$$

Результаты поверки считаются положительными, если абсолютная погрешность измерений температуры точки росы (инея) не превышает ± 2 °C.

8.8.3 Определение пределов основной абсолютной погрешности измерений избыточного давления

Перед проведением измерений должны быть выполнены следующие подготовительные работы:

- 1. Гигрометр должны быть выдержан при температуре, указанной в 8.6.1, не менее 3 час.
- 2. Система, состоящая из соединительных линий, образцовых СИ и вспомогательных средств для задания и передачи давления, должна быть проверена на герметичность в соответствии с пунктами 3 4.
- 3. Проверка герметичности системы производится при значениях давления, равных верхнему пределу измерений поверяемого гигрометра.
- 4. При проверке герметичности системы, предназначенной для испытаний гигрометров, на место проверяемого гигрометра устанавливают преобразователь давления, герметичность которого проверена, создают давление, соответствующее верхнему приделу измерений для данной модификации гигрометра, и отключают источник давления. Систему считают герметичной, если после трехминутной выдержки под давлением, равным верхнему пределу измерений, в течение последующих 2 мин. в ней не наблюдается падение давления.

Допускается изменение давления, обусловленное изменением температуры окружающего воздуха и изменением температуры измеряемой среды, которое не должно превышать значений, указанных в таблице 4.

Таблица 4

Верхний предел измере- ний, бар	Допускаемое изменение температуры в процессе поверки, °C	Допускаемое изменение давления при поверке, % от верхнего предела измерений	
10	±1	±10	

Проведение поверки

- 1. Выполняют корректировку «0» канала измерения давления. Методика выполнения корректировки «0» приведена в 6.2.5.5.
- 2. Основную абсолютную погрешность измерений определяют в точках, соответствующих 20 %, 40 %, 60 %, 80 % и 100 % диапазона измерений.
 - 3. Основную погрешность измерений (Δ) определяют как максимальное от-

клонение измеренных значений давления от значений давления измеренного эталонным СИ. Методика измерения давления с использованием Метран 502-ПКД-10П приведена в п. 2.6 документа «Калибратор давления портативный Метран 502-ПКД-10П. Руководство по эксплуатации. 1556.000.00 РЭ».

$$\Delta = P_{\text{изм}} - P_{\text{эт}},$$
где

Рэт - значение давления, измеренное эталонным СИ;

 $P_{\mbox{\tiny изм}}$ - значение давления, измеренное поверяемым гигрометром.

Результаты поверки считаются положительными, если во всех контролируемых точках выполняется соотношение:

$$|\Delta| < |\Delta|_{\text{норм}}|$$
, где

 Δ – абсолютная погрешность гигрометра, вычисленная по формуле 1;

 $\Delta_{\text{норм}}$ – абсолютная погрешность гигрометра не более, бар ..± (0,05+0,02P*);

*Р - измеренное значение избыточного давления ($P_{\text{изм}}$) в бар.

8.9 Оформление результатов поверки

- 8.9.1 При положительных результатах поверки оформляется свидетельство о поверке в соответствии с ПР 50.2.006-94 или заполняется таблица в разделе 12 «Сведения о поверке» и ставится оттиск поверительного клейма.
- 8.9.2 При отрицательных результатах поверки оформляют извещение о непригодности установленной формы в соответствии ПР 50.2.006-94, результаты предыдущей поверки аннулируются (аннулируется свидетельство о поверке и гасится поверительное клеймо в разделе 12 «Сведения о поверке»).

9. ГАРАНТИИ ИЗГОТОВИТЕЛЯ (ПОСТАВЩИКА)

- 9.1. Предприятие-изготовитель (поставщик) гарантирует соответствие качества гигрометра Ива-10 требованиям технических условий ТУ 4311-012-77511225-2011 при соблюдении условий и правил эксплуатации, установленных настоящим Руководством по эксплуатации.
- 9.2. Гарантийный срок эксплуатации 12 месяцев. Срок гарантии отсчитывается от даты отгрузки прибора Потребителю поставщиком, являющимся торговым агентом изготовителя. При отсутствии гарантийного талона или неправильного его заполнения гарантийный срок исчисляется от даты выпуска.

Гарантия не распространяется на приборы:

- имеющие механические повреждения вследствие ненадлежащей эксплуатации или транспортировки;
 - эксплуатируемые вне условий применения.

Гарантийные обязательства не распространяются на услуги по поверке данного средства измерения в органах Государственной метрологической службы. Стоимость первичной поверки прибора включена в стоимость прибора.

Предприятие-изготовитель обязуется в течение гарантийного срока безвозмездно устранять выявленные дефекты или заменять вышедшие из строя части

или весь гигрометр, если он не может быть исправлен на предприятии-изготовителе.

При необходимости проведения очередной (внеочередной) поверки прибора **рекомендуется** проведение предварительных регламентных работ по дополнительной калибровке (юстировке) прибора на предприятии-изготовителе, в органах Государственной метрологической службы, оказывающих данную услугу или самим Потребителем в соответствие с методикой, приведенной в Руководстве по эксплуатации на данный прибор.

При выполнении регламентных работ предприятие-изготовитель может оказывать услуги по проведению поверки в органах Государственной метрологической службы, других уполномоченных на то органах и организациях, стоимость которых включается в стоимость указанных услуг. Предприятие-изготовитель может заключать с Потребителем соглашения на техническое обслуживание выпускаемой им продукции

По всем вопросам гарантийного или послегарантийного обслуживания обращайтесь к Вашему поставщику или на предприятие-изготовитель.

10. ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

- 10.1. Гигрометры, упакованные в соответствии с техническими условиями ТУ 4311-012-77511225-2011, могут транспортироваться на любое расстояние всеми видами транспорта: водным, воздушным (в отапливаемых герметизированных отсеках), железнодорожным, в сочетании их между собой и автомобильным транспортом, с общим числом перегрузок не более четырех, в крытых транспортных средствах, в том числе, в универсальных контейнерах при температуре окружающей среды от минус 20°С до плюс 50°С.
- 10.2. Гигрометры должны храниться в сухом помещении при температуре окружающего воздуха от 10 до 35°C, влажности до 80 %. Наличие в воздухе паров кислот, щелочей и прочих примесей не допускается.

11. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Гигрометр Ива-10М заводской номер условиям ТУ 4311-012-77511225-2011 и признан годнь Номер версии программного обеспечения	ым к эксплуатации.
Дата выпуска "" 201 г.	
подпись руководителя предприятия-изгот	овителя

12. СВЕДЕНИЯ О ПОВЕРКЕ

Дата	Параметр, по ко-	Результат	Подпись и клеймо	Дата
поверки	торому проводи-	поверки	представителя пове-	очеред-
	лась поверка	(годен, не го-	рочного органа	ной по-
		ден)		верки
	Влажность			
	Давление			
	Влажность			
	Давление			
	Влажность			
	Давление			
	Влажность			
	Давление			

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ IVA10

Программа **Iva10** предназначена для считывания на персональный компьютер накопленной гигрометром информации и последующей её обработки.

Установка программы Iva10 на персональный компьютер

Для нормального функционирования программы **Iva10** необходим персональный компьютер следующей минимальной конфигурации:

Процессор с частотой 1 ГГц и выше, 512 Mb оперативной памяти, 100 Mb свободного места на жестком диске, операционная система Microsoft Windows XP/Vista/7, свободный USB-порт.

Для установки программы запустите файл **setup.exe**, находящийся на дистрибутивном диске. Далее, следуйте стандартным инструкциям:

- 1. Нажмите кнопку «Next».
- 2. Если Вас устраивает путь установки программы по умолчанию, нажмите кнопку «Далее», иначе, нажмите «Обзор» и выберите другой путь установки.
 - 3. Выберите тип прибора «Версия для ИВА-10 v2».
- 4. Выберите имя программной группы или примите предложенное по умолчанию, нажав кнопку «Далее».
- 5. Программа готова к установке. Нажмите «Далее» чтобы; начать процесс копирования файлов на Ваш жесткий диск;
 - 6. По завершении установки перезагрузите компьютер.

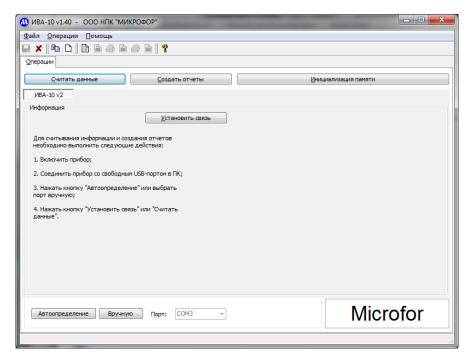
Установка драйвера виртуального СОМ-порта

Прибор с USB-интерфейсом определяется в системе как виртуальный СОМпорт. При установке программы DataLogger на компьютер, подключенный к Интернет драйвер виртуального СОМ-порта устанавливается автоматически при подключении компьютеру включенного гигрометра (до запуска ПО ИВА-10!).

Если драйвер не удалось установить автоматически, установите его вручную, запустив с диска, поставляемого с гигрометром из каталога CD:\USB Driver \STM\ файл

- для операционной системы x86 (32 бит) VCP_Vx.x.x_Setup.exe;
- для операционной системы x64 (64 бит) VCP_Vx.x.x_Setup_x64.exe.

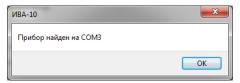
В открывшемся окне нажмите кнопку «Next»:


После завершения установки нажмите на кнопку «Finish»:

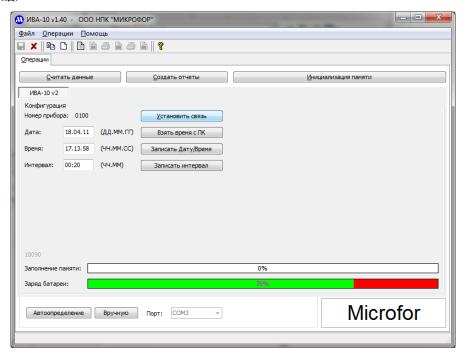
После установки драйвера можно приступить к работе с программой Iva10.

Работа с программой Iva10

Включите гигрометр, нажав на кнопку «ВКЛ» на лицевой панели. После завершения процедуры тестирования подключите гигрометр к USB-порту персонального компьютера. Запустите файл **Iva10.exe** (Обычно: Пуск >Программы >Microfor> Iva10). После запуска файла **Iva10.exe**, Вы увидите главное окно программы, содержащее в себе заголовок, строку меню, панель инструментов, рабочее поле с закладками и строку статуса:



Панель инструментов:

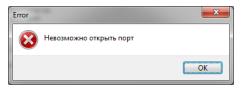

	Сохранить отчет в удобном для Вас формате
×	Выход из программы
	Выбрать и создать отчеты
	Инициализация (очистка) памяти
	Вывести закладку «Операции»
	Вывести закладку «Текстовый отчёт»
	Распечатать текстовый отчёт (таблицу)
	Вывести закладку «Графический отчёт»
	Распечатать графический отчёт (график)
	Настройка графика
	Открыть файл помощи
P	О программе

Для удобства пользователя, применен метод тройного дублирования органов управления, поэтому Вы можете выполнять различные действия из меню, с помощью панели инструментов или, непосредственно, с помощью кнопок на рабочем поле.

Нажмите кнопку «**Автоопределение**», если связь с гигрометром осуществляется впервые. После успешного определения порта:

нажмите кнопку «Установить связь». Окно программы приобретет следующий вид:

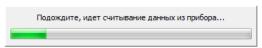
В этом окне выводится информация, считанная из гигрометра:

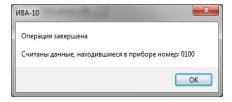

- заводской номер гигрометра (в данном случае 0100);
- текущая дата (18 апреля 2011 года);
- текущее время (17 часов 13 минут 58 секунд);
- интервал записи (**00:20**);
- шкала заполнения памяти (0%);
- шкала заряда аккумуляторной батареи (75%).

Для установки текущих времени и даты необходимо нажать на кнопку «Взять время с ПК» и сразу же нажать на кнопку «Записать Дату/Время».

Для записи интервала необходимо ввести требуемое значение в окно «Интервал» и нажать на кнопку «Записать интервал». Интервал вводится в диапазоне от 5 минут до 12 часов. При вводе значения «00:00» запись в память в выключен-

ном состоянии гигрометра не осуществляется. Проверьте правильность ввода данных, нажав кнопку «Установить связь».

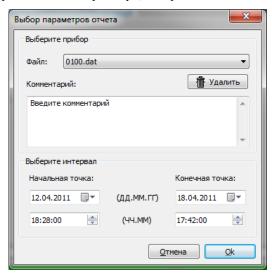

Если после нажатия кнопки «Установить связь» высветилось сообщение:


- закройте программу **Iva10.exe**;
- отключите USB-кабель от гигрометра;
- подключите USB-кабель к гигрометру;
- откройте программу **Iva10.exe**;
- нажмите кнопку «Установить связь».

Считывание данных из памяти гигрометра

Для считывания накопленных данных нажмите кнопку «Считать данные». При этом начнется считывание данных, которое может занять до нескольких минут:

По завершении этого этапа, Вы получите подтверждение:

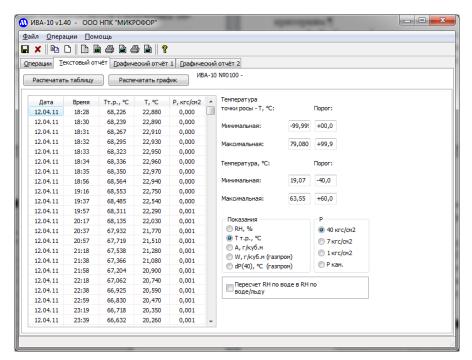

Получение отчетов

- 1. Нажмите кнопку «Создать отчеты», расположенную на вкладке «Операции».
- 2. В открывшемся окне выберите номер гигрометра, отчет по которому Вы хотите получить. Если в выпадающем списке нет ни одной записи, произведите считывание информации из прибора (см. выше).

Для лучшей ориентации в номерах приборов, Вы можете использовать поле «Комментарий», записав в него информацию, связанную с конкретным гигрометром.

3. При необходимости укажите временные интервалы для получения отчета с определенными временными рамками. В противном случае в отчете будет отоб-

ражаться вся история данного гигрометра, содержащаяся в базе данных:

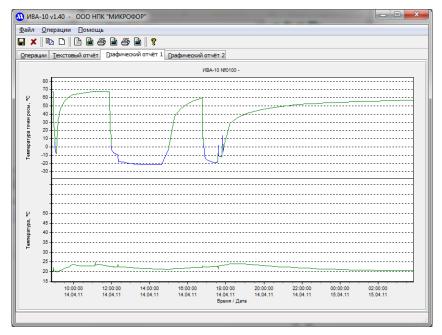

- 4. Нажмите кнопку «**Ok**». Начнется создание отчетов по указанным Вами критериям.
- 5. Выберите форму отчета (текстовая или графическая), нажав на вкладки «Текстовый отчёт» или «Графический отчёт 1 или 2», соответственно. При этом окна программы примут вид, показанный ниже.

В окне «**Текстовый отчет**» выводятся в виде таблицы значения результатов измерений (дата, время, влажность температура и давление), минимальные и максимальные значения влажности и температуры. Также в этом окне имеется возможность ввода нижнего и верхнего значений порогов по влажности и температуре. При выходе измеренных значений за указанные пределы, соответствующие результаты измерений в таблице или на графике будут выделяться разным цветом.

В окне «Текстовый отчет» имеются переключатели единиц измерений влажности - относительная влажность, температура точки росы и массовая концентрация влаги. Величина относительной влажности при отрицательных температурах может представляться по воде или льду. При установке любого из этих параметров происходит пересчет данных в таблице и на графике.

Кроме того имеются переключатели для приведения значений влажности к стандартным (7 бар или 1 бар) значениям давления.

- 6. Для сохранения текстового отчета нажмите кнопку «Сохранить отчёт» на панели инструментов. Выберите имя файла и тип сохраняемого отчёта и нажмите кнопку «Сохранить».
- 7. Для печати отчетов используйте кнопки «Распечатать таблицу» или «Распечатать график».


Вид окна «Текстовый отчет».

При выборе вкладки «Графический отчёт 1» в графическом виде представляются значения влажности (верхний график) и температуры (нижний график).

При выборе вкладки «Графический отчёт 2» в графическом виде представляются значения давления.

Для настройки графика используется кнопка «**Настройка графика**» в панели инструментов или главном меню (**Операции > настройка графика**).

В открывшемся окне Вы сможете выбрать начальные и конечные точки по оси времени, выбрать, если необходимо, разделение графика на n- частей (например, для разделения дней в недельном отчете), выбрать режим для оси влажности и температуры.

Вид окна «Графический отчет 1».

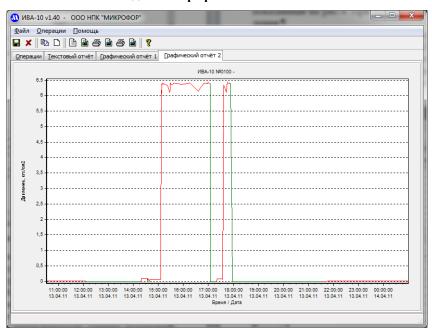


Рис.4. Вид окна «Графический отчет 2».

Виды режимов осей влажности и температуры следующие:

- Выключена ось не отображается.
- Автоматические пределы пределы оси выбираются автоматически, в зависимости от измеренных максимальных и минимальных значений.
- Весь диапазон максимально возможный диапазон для влажности или температуры.
- Ручной ввод пределы вводятся вручную в соответствующие поля, расположенные ниже поля ввода режима.

Кнопка «Записать график в файл» открывает диалог записи графического файла в форматах (.BMP) и (.WMF).

Для увеличения какого-либо участка графика используйте мышь. Установите курсор на верхний левый угол области для увеличения, нажмите ЛЕВУЮ кнопку мыши и, НЕ ОТПУСКАЯ ее, переместите курсор в правый нижний угол увеличиваемой области. Отпустите кнопку.

Для возврата в первоначальное состояние, выполняйте те же действия, только ведите курсор из правого нижнего угла в левый верхний.

Для перемещения всего графика используйте ПРАВУЮ кнопку мыши - нажмите ее и, не отпуская, перемещайте курсор в нужном Вам направлении.

Для печати графика нажмите кнопку «Печать графика», расположенную на вкладке «Текстовый отчет». При нажатии на эту кнопку, Вам будет предложено выбрать некоторые параметры печати, ориентацию (портрет/ландшафт) и настроить принтер.

Инициализация памяти

Данную операцию следует проводить в случае, если Вы хотите очистить содержимое памяти. Периодическая очистка позволяет уменьшить время считывания и обработки отчетов.

Внимание! При этом произойдёт потеря предыдущих результатов измерений в памяти гигрометра, поэтому перед инициализацией убедитесь, что содержимое памяти считано в память компьютера.

Для инициализации памяти нажмите кнопку «Инициализация памяти» и дождитесь подтверждения окончания операции.

Ваши замечания и предложения по улучшению программного обеспечения **Iva10**Вы можете направлять по адресу электронной почты: mail@microfor.ru или
v_soft@microfor.ru. За обновлениями программного обеспечения заходите на сайт
НПК Микрофор: www.microfor.ru или ива.рф

СОДЕРЖАНИЕ

1.	Введение	1
2.	Назначение	1
3.	Основные технические данные и характеристики	1
4.	Состав термогигрометра и комплект поставки	3
5.	Устройство и работа термогигрометра	5
6.	Обзор основных режимов гигрометра	8
	6.1. Включение гигрометра	8
	6.2. Основное меню	9
	6.2.1. Мастер измерений	10
	6.2.2. Графический режим вывода	15
	6.2.3. Текстовый режим вывода	16
	6.2.4. Режим отображения пневматической схемы	16
	6.2.5. Режим конфигурирования	17
	6.2.5.1. Конфигурирование чередования режимов работы	18
	6.2.5.2. Мастер автокоррекции	18
	6.2.5.3. Выбор отображаемого параметра влажности	22
	6.2.5.4. Регулировка яркости индикатора и громкости	23
	6.2.5.5. Установка нуля датчиков расхода и давления	23
	6.2.5.6. Возврат в основное меню	24
	6.2.6. Выключение гигрометра	24
7.	Подготовка к работе и работа с гигрометром	25
	Зарядка аккумуляторной батареи	26
	Сброс гигрометра при зависании программы	27
	Работа с памятью	27
8.	Методика поверки	28
9.	Гарантии изготовителя (поставщика)	32
10.	Транспортировка и хранение	33
11.	Свидетельство о приемке	34
12.	Сведения о поверке	34
	Приложение. Программное обеспечение Iva10	35
	Установка программы Iva10 на персональный компьютер	35
	Установка драйвера виртуального СОМ-порта	35
	Работа с программой Iva10	36
	Считывание данных из памяти гигрометра	39
	Получение отчетов	39
	Инициализация памяти	43

